• 제목/요약/키워드: Homogeneous function

검색결과 439건 처리시간 0.023초

Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2011
  • G-protein coupled receptors (GPCRs) constitute an important class of drug targets and are involved in every aspect of human physiology including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth, and immune response. Radiometric assays have been the classic method used during the search for potential therapeutics acting at various GPCRs for most GPCR-based drug discovery research programs. An increasing number of diverse small molecules, together with novel GPCR targets identified from genomics efforts, necessitates the use of high-throughput assays with a good sensitivity and specificity. Currently, a wide array of high-throughput tools for research on GPCRs is available and can be used to study receptor-ligand interaction, receptor driven functional response, receptor-receptor interaction,and receptor internalization. Many of the assay technologies are based on luminescence or fluorescence and can be easily applied in cell based models to reduce gaps between in vitro and in vivo studies for drug discovery processes. Especially, cell based models for GPCR can be efficiently employed to deconvolute the integrated information concerning the ligand-receptor-function axis obtained from label-free detection technology. This review covers various platform technologies used for the research of GPCRs, concentrating on the principal, non-radiometric homogeneous assay technologies. As current technology is rapidly advancing, the combination of probe chemistry, optical instruments, and GPCR biology will provide us with many new technologies to apply in the future.

불포화 토양에서 공기의 배출/제한이 침투속도에 미치는 영향 (Effects of Air Drain and Confined Conditions to Infiltration Rate in Unsaturated Soils)

  • 김상래;기재홍;김영진;한무영
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.681-687
    • /
    • 2008
  • It is well known that the water infiltration rate depends on soil properties such as soil water content, water head, capillary suction, density, hydraulic conductivity, and porosity. However, most of proposed infiltration models assume that the air phase is continuous and in equilibrium with the atmosphere or air compression and air entrapment on infiltration was not considered. This study presents experimental results on unsaturated water infiltration to relate air entrapment and hydraulic conductivity function based on soil air properties. The objectives of this study were to measure change of soil air pressure ahead of wetting front under air drain and air confined condition to find the confined air effect on infiltration rate, to reduce the entrapped air volume related with soil air pressure to increase the soil permeability, and to make a basis of infiltration process model for the purpose of improvement of infiltration rate in the homogeneous soil column. The results of the work show that soil air pressure increases according to increasement of the saturated soil depth rather than the wetting front depth during infiltration process.

구조용 사각 보의 감쇠측정 (Damping Measurements of Structural Rectangular Beam)

  • 류봉조;송선호;윤충섭;안병욱;이영엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1071-1074
    • /
    • 2006
  • The frequency response functions and loss factors, $\eta$, of structurally hollowed, rectangular, metal cantilever beams have been measured in bending vibrations within low strain amplitudes. The beams were heat treated or fined with aluminum to vary the material conditions. The measured frequency response functions at the end of the cantilevered beam were processed to calculate the structural damping ratios. The results showed that the modal frequencies and damping ratios of heat treated beam are increased due to the increase of beam rigidity with the predictions of the classical beam theory. When the beams are fined with aluminum, however, the frequencies are decreased due to the increase of mass, while the damping ratios are increased. As the agreement between measurement and classical theory is good, the performance of a beam with heat treated or fined with dissimilar material can be duplicated, for industrial and most practical purposes, by the theory developed for an internally damped homogeneous beam.

  • PDF

2차원 전기비저항 모델링에서 후리에역변환의 수치구적법 (Numerical Quadrature Techniques for Inverse Fourier Transform in Two-Dimensional Resistivity Modeling)

  • 김희준
    • 자원환경지질
    • /
    • 제25권1호
    • /
    • pp.73-77
    • /
    • 1992
  • 본 논문에서는 2차원 전기비저항 모델링에서 후리에역변환을 계산하는 수치구적법을 비교하였다. 지수함수 및 큐빅스프라인 보간을 사용한 구적법을 균질대지 모델에 대하여 검토하였다. 이들 기술적용시, ${\lambda}_{min}$을 최소의 샘플링파수라고 할 때 0에서 ${\lambda}_{min}$까지 간격에 대한 적분은 후리에변환된 포텐샬을 대수 함수로 근사함으로써 계산하였다. 이러한 방법은 ${\lambda}=0$에서의 대수적인 불연속성에 기인한 후리에역변환의 오차를 크게 줄일 수 있다. 수치계산 결과, 샘플링간격이 적당하다면 큐빅스프라인 보간법이 지수함수 보간법보다 더 정확함을 알았다.

  • PDF

확률론적 응답면 기법을 이용한 저수지 제체의 침투수량 해석 (The Analysis of the Seepage Quantity of Reservoir Embankment using Stochastic Response Surface Method)

  • 봉태호;손영환;노수각;최우석
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.75-84
    • /
    • 2013
  • The seepage quantity analysis of reservoir embankment is very important for assessment of embankment safety. However, the conventional analysis does not consider uncertainty of soil properties. Permeability is known that the coefficient of variation is larger than other soil properties and seepage quantity is highly dependent on the permeability of embankment. Therefore, probabilistic analysis should be carried out for seepage analysis. To designers, however, the probabilistic analysis is not an easy task. In this paper, the method that can be performed probabilistic analysis easily and efficiently through the numerical analysis based commercial program is proposed. Stochastic response surface method is used for approximate the limit state function and when estimating the coefficients, the moving least squares method is applied in order to reduce local error. The probabilistic analysis is performed by LHC-MCS through the response surface. This method was applied to two type (homogeneous, core zone) earth dams and permeability of embankment body and core are considered as random variables. As a result, seepage quantity was predicted effectively by response surface and probabilistic analysis could be successfully implemented.

Static analysis of functionally graded sandwich plates with porosities

  • Keddouri, Ahemd;Hadji, Lazreg;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • 제8권3호
    • /
    • pp.155-177
    • /
    • 2019
  • In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate with new definition of porosity distribution taking into account composition and the scheme of the sandwich plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Material properties of FGM layers are assumed to vary continuously across the plate thickness according to either power-law or sigmoid function in terms of the volume fractions of the constituents. The face layers are considered to be FG across each face thickness while the core is made of a ceramic homogeneous layer. Governing equations are derived from the principle of virtual displacements. The closed-form solution of a simply supported rectangular plate subjected to sinusoidal loading has been obtained by using the Navier method. Numerical results are presented to show the effect of the material distribution, the sandwich plate geometry and the porosity on the deflections and stresses of FG sandwich plates. The validity of the present theory is investigated by comparing some of the present results with other published results.

ReMnO3(Re:Ho, Er) 박막의 강유전성에 미치는 열처리 공정의 영향 (Effects of Thermal Heat Treatment Process on the Ferroelectric Properties of ReMnO3 (Re:Ho, Er) Thin Films)

  • 김응수;채정훈
    • 한국세라믹학회지
    • /
    • 제42권11호
    • /
    • pp.763-769
    • /
    • 2005
  • Ferroelectric $ReMnO_3$(Re:Ho, Er) thin films were deposited on Si(100) substrate by Metal-Organic Chemical Vapor Deposition (MOCVD). Crystallinity and electric properties of $ReMnO_3$(Re:Ho, Er) thin films were investigated as a function of thermal heat treatment process, CHP (Conventional Heat-treatment Process) and RTP (Rapid Thermal Process). $ReMnO_3$(Re:Ho, Er) thin films prepared by RTP showed higher c-axis preferred orientation and homogeneous surface roughness than those prepared by CHP. The remnant polarization of ferroelectric hysteresis loop of $ReMnO_3$(Re:Ho, Er) thin films was strongly dependent on the c­axis preferred orientation of hexagonal single phase, and the leakage current characteristics of thin films were dependent on the homogeneity of grain size as well as surface roughness of thin films.

EVALUATION 01 OIL DISPERSION AGENT BY ASSESSMENT 01 COLOR STRENGTH 01 ORGANIC PIGMENT

  • H., Young-Chan;R., Seo-Joon;L., Dong-Wook;H., Soon-Taek
    • 대한화장품학회지
    • /
    • 제24권3호
    • /
    • pp.73-80
    • /
    • 1998
  • This Study was performed to get the suitable oil dispersion agent by assessment of color strength of organic pigment in non-aqueous systems. Organic pigment is used as a color expression material with other body pigments in the make-up products. But occasionally aggregation or agglomeration occurs for the lack of affinity with medium, This function is the cause of disturbing homogeneous dispersion, and then bring about an instability of products. Our study, research of dispersion mechanism between the pigment and oil phase, has been executed to solve this problem, and find a oil dispersion agent having optimum dispersion condition. Generally dispersion is related to between the solid-liquid mutual properties and electrical phenomena associated with solid-liquid interface. This factor is determined to input energy, milling time, optical properties, particle size, rheological properties, etc. Ideal dispersion state is told that coloring primary solid particle is homogeneously dispersed in medium. Good dispersed colorants are strongly and clearly appeared. We are already known that the particle size of organic pigment, chemical properties and viscosity of medium, refractive index. Consequently We determine the affinity of medium and organic pigment by measuring of color strength in the same mechanical condition. UV-VISIBLE RECORDING SPECTRO PHOTOMETER is used for measuring apparatus. We can decided the dispersion level of oil dispersion agent by measuring absorbance of color strength in the visible range that diluted medium for colloid colorant particles.

  • PDF

이산 웨이블릿 변환을 이용한 3차원 난류 채널 유동에 관한 연구 (A Study of 3-Dimensional Turbulent Channel Flow Using Discrete Wavelet Transform)

  • 김강식;이상환
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.314-321
    • /
    • 2005
  • Discrete Wavelet Transform (DWT) has been applied to the Direct Numerical Simulation (DNS) data of turbulent channel flow. DWT splits the turbulent flow into two orthogonal parts, one corresponding to coherent structures and the other to incoherent background flow. The coherent structure is extracted from not vorticity field but velocity's since the channel flow is not isoropic. By comparing DWT's result of channel flow with that of isotropic flow, it is shown that coherent structure maintains the properties of original channel flow. The velocity field of coherent structures can be represented by few wavelet modes and that these modes are sufficient to reproduce the velocity probability density function (PDF) and the energy spectrum over the entire inertial range. The remaining incoherent background flow is homogeneous, has small amplitude, and is uncorrelated. These results are compared with those obtained for the same compression rate using large eddy simulation (LES) filtering. In contrast to the incoherent background flow of DWT, the LES subgrid scales have a much larger amplitude and are correlated, which makes their statistical modeling more difficult.

유기산염 열분해법으로 합성한 Cu-Ni-Zn 페라이트분말의 특성과 하소조건 (Calcined Condition and Characteristic of Cu-Ni-Zn Ferrite Powder Made by Thermal Decomposition of Organic Acid Salt)

  • 정재우
    • 한국분말재료학회지
    • /
    • 제2권1호
    • /
    • pp.29-35
    • /
    • 1995
  • In this study the calcined condition and characteristic of Cu-Ni-Zn ferrite powder were investigated. The Cu-Ni-Zn ferrite powder has been synthesized by the thermal decomposition of the organic acid salt. This process did not require a strict pH control and provided the uniform composition and fine powder with about 0.3 $\mu\textrm{m}$. The XRD diffraction pattern of this powder showed about 50% spinel phase. The optimum calcination was found to be done at $700^{\circ}C$ for one hour. After the calcination, the amount of spinel increased to 90%. The distribution of the particle size showed bimodal peaks, one was about 0.5 $\mu\textrm{m}$ and the other was about 20 $\mu\textrm{m}$. The large particles of 20 $\mu\textrm{m}$ were the agglomeration of fine Particles. The mean Particle size of the powder was about 0.4 $\mu\textrm{m}$. The powder was compacted under 100 MPa pressure and sintered at 1100~ $1250^{\circ}C$ for one hour in air. The density of ferrites specimen was a function of the sintering temperature. The higher the temperature, the denser the ferrite. The maximum relative density of the sintered ferrite was about 93% at $1250^{\circ}C$. The grain size of sintered specimen at $1200^{\circ}C$ was 5 $\mu\textrm{m}$ and homogeneous.

  • PDF