• Title/Summary/Keyword: Homogeneous combustion

Search Result 191, Processing Time 0.021 seconds

Observation on the Ignition Delay Time of Cool and Thermal Flame of n-heptane/alcohol Blended Fuel at Low Temperature Combustion Regime (저온연소조건에서 n-heptane/alcohol 혼합연료의 냉염과 열염에 대한 착화지연 관찰)

  • Song, Jaehyeok;Kang, Kijoong;Ryu, Seunghyup;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.12-20
    • /
    • 2013
  • The ignition delay time is an important factor to understand the combustion characteristics of internal combustion engine. In this study, ignition delay times of cool and thermal flame were observed separately in homogeneous charge compression ignition(HCCI) engine. This study presents numerical investigation of ignition delay time of n-heptane and alcohol(ethanol and n-butanol) binary fuel. The $O_2$ concentration in the mixture was set 9-10% to simulate high exhaust gas recirculation(EGR) rate condition. The numerical study on the ignition delay time was performed using CHEMKIN codes with various blending ratios and EGR rates. The results revealed that the ignition delay time increased with increasing the alcohol fraction in the mixture due to a decrease of oxidation of n-heptane at the low temperature. From the numerical analysis, ethanol needed more radical and higher temperature than n-butanol for oxidation. In addition, thermal ignition delay time is sharply increasing with decreasing $O_2$ fraction, but cool flame ignition delay time changes negligibly for both binary fuels. Also, in high temperature regime, the ignition delay time showed similar tendency with both blends regardless of blending ratio and EGR rate.

A Study on the Spray Characteristics of Flash Boiling Using Two Component Mixing Fuel (2성분 혼합연료를 이용한 감압비등 분무특성에 관한 연구)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.451-458
    • /
    • 2009
  • This experimental study was conducted to investigate macroscopic characteristics of the flash boiling spray with tow component mixing fuel. Homogeneous Charge Compression Ignition (HCCI) is a newer combustion method for internal combustion engines to reduce nitrogen oxide and particulate matter simultaneously. But it is difficult to put this combustion method to practical use in an engine because of such problems as instability of combustion in low load operating conditions and knocking in high load operating conditions. In HCCI, combustion characteristics and exhaust emissions depend on conditions of air/fuel mixture and chemical reactions of fuel molecules. The fuel design approach is achieved by mixing two components which differ in properties such as density, viscosity, volatility, ignitability and so on. We plan to apply the fuel design approach to HCCI combustion generated in a real engine, and examine the possibility of mixture formation control using the flash boiling spray. Spray characteristics of two component fuel with a flash boiling phenomenon was investigated using Shlieren and Mie scattering photography. Test fuel was injected into a constant volume vessel at ambient conditions imitated injection timing BTDC of a real engine. As a result, it was found that a flash boiling phenomenon greatly changed spray structure, especially in the conditions of lower temperature and density. Therefore, availability of mixture formation control using flash boiling spray was suggested.

The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion (분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향)

  • Kook, Sang-Hoon;Kong, Jang-Sik;Park, Se-Ik;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

Study on the Effect of Thermal Stratification on DME/n-Butane HCCI Combustion (열적성층화가 DME/n-Butane 예혼합압축자기착화연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1035-1042
    • /
    • 2010
  • The thermal stratification effect has been thought as one of the way to avoid dramatically generating the heat from HCCI combustion. We investigate the effect of thermal stratification on HCCI combustion fueled by DME and n-Butane. The thermal stratification occurs in a combustion chamber of a rapid compression machine with premixture by buoyancy effect that is made of fuel and air. The premixture is then adiabatically compressed, and during the process, the in-cylinder gas pressure is measured and two-dimensional chemiluminescence images are prepared and analyzed. Under the thermal stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous case. Further, the LTR period and the luminosity duration under homogeneous conditions are shorter than the corresponding quantities under stratified conditions. Additionally, under stratified conditions, the brightest luminosity intensity is delayed longer than that of homogeneous condition.

Using Two-Dimensional Chemiluminescence Images to Study Inhomogeneity in Mixture Gas in the Combustion Chamber for HCCI Combustion (이차원발광화상계측에 의한 예혼합압축자기착화연소의 연소실내 혼합기의 불균질성에 관한 연구)

  • Lim, Ock-Taeck;Iida, Norimasa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1043-1050
    • /
    • 2010
  • Fuel stratification and thermal stratification occur in the HCCI combustion chamber on a microscopic scale. They affect the ignition and combustion processes. In this study, the effect of the inhomogeneity in the mixture gas on the HCCI combustion process was investigated. Two-dimensional chemiluminescence images were captured using a framing camera to evaluate the flame structure. DME was used as the test fuel. First, the effect of inhomogeneity in the fuel distribution in the premixture was investigated for the four-stroke optically accessible engine. Then, by comparing the combustion of the homogeneous mixture in the rapid compression machine, which does not contain any residual gas, with the combustion in the four-stroke engine, the effect of inhomogeneity in temperature due to the residual gas was analyzed. The results showed that a time lag appears spatially in combustion under inhomogeneous conditions in the four-stroke engine. The spatial variation in the combustion without the residual gas in the rapid compression machine is less than that in the combustion in the four-stroke engine.

A Study on the Characteristics of Mixture Formation and Combustion in HCCI Engine according to the Various Injection Angles and Timings (분사시기 및 분사각 변화에 따른 HCCI 엔진의 혼합기 분포 및 연소특성에 관한 연구)

  • Kim, Hyung-Min;Ryu, Jea-Duk;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.20-25
    • /
    • 2006
  • Recently, there has been an interest in premixed diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to conventional diesel engines. Early studies are shown that in a HCCI(Homogeneous Charge Compression Ignition) engine, the fuel injection timing and injection angle affects the mixture formations. Thus the purpose of this study was to investigate relationship of combustion and mixture formations according to injection timing and injection angle in a common rail direct injection type HCCI engine using a early injection method called the PCCI(Premixed Charge Compression Ignition). From this study, we found that the fuel. injection timing and injection angle affect the mixture formations and in turn affects combustion in the PCCI engine.

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor (하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구)

  • Hwang, Cheol-Hong;Jeong, Yeong-Sik;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.583-592
    • /
    • 2001
  • The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of N$_2$O was more dominant than that of NO due to the relative importance of the reaction N$_2$+O(+M)→N$_2$O(+M). Finally the productions of CO and NOx by amount of methane addition were studied.

Knocking and Combustion Characteristics at Rich Limit of Gasoline HCCI Engine (가솔린 예혼합 압축 착화 엔진의 농후 한계에서 연소와 노킹 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.9-16
    • /
    • 2006
  • Variable valve timing is one of the attractive ways to control homogeneous charge compression ignition (HCCI) engine. Hot internal residual gas which can be controlled by variable valve timing(VVT) device, makes fuel evaporated easily, and ignition timing advanced. Regular gasoline was used as main fuel and di-methyl ether(DME) was used as ignition promoter in this research. HCCI engine operating range is limited by high combustion peak pressure and engine noise. High combustion pressure can damage the engine during operation. To avoid engine damage, the rich limits have to define using various methods. Peak combustion pressure, rate of cylinder pressure rise was considered to determine rich limit of engine operating range. Knock probability was correlated with the rate of cylinder pressure rise as well as the peak combustion pressure.

Effects of Two-Stage Injection on Combustion and Exhaust Emission Characteristics in a HCCI Engine (2단분사법에 따른 예혼합압축착화엔진의 연소 및 배기특성)

  • Kook, Sang-Hoon;Park, Cheol-Woong;Choi, Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.32-39
    • /
    • 2004
  • HCCI (Homogeneous Charge Compression Ignition) combustion has a great advantage in reducing NOx (Nitrogen Oxides) and PM (Particulate Matter) by lowering the combustion temperature due to spontaneous ignitions at multiple sites in a very lean combustible mixture. However, it is difficult to make a diesel-fuelled HCCI possible because of a poor vaporability of the fuel. To resolve this problem, the two-stage injection strategy was introduced to promote the ignition of the extremely early injected fuel. The compression ratio and air-fuel ratio were found to affect not only the ignition, but also control the combustion phase without a need for the intake-heating or EGR (Exhaust Gas Recirculation). The ignition timing could be controlled even at a higher compression ratio with increased IMEP (Indicated Mean Effective Pressure). The NOx (Nitrogen Oxides) emission level could be reduced by more than 90 % compared with that in a conventional DI (Direct Injection) diesel combustion mode, but the increase of PM and HC (Hydrocarbon) emissions due to over-penetration of spray still needs to be resolved.

Research on the Combustion and Emission Characteristics of the DME/Diesel Dual-fuel Engine (DME/Diesel 듀얼 퓨얼 엔진의 연소 및 배출 특성에 관한 연구)

  • Lim, Ock-Taeck;Pyo, Young-Duck;Lee, Young-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.29-34
    • /
    • 2011
  • This study investigates the potential of DME/Diesel dual fuel engine for reducing emissions with same power. Dual fuel engine controls the combustion using two different fuels, DME and diesel with different auto-ignition timings. In the previous work, the caracteristics of combustion and emissions under single cylinder engine and ignition is done by compression ignition. Pre-mixture is formed by injecting low-pressure DME into an intake manifold and high-pressure fuel (diesel or DME) is injected directly into the cylinder. Both direct diesel injection and port fuel injection reduced the significant amount of Smoke, CO and NOx in the homogeneous charge compression ignition engine due to present of oxygen in DME. In addition, when injecting DME directly in cylinder with port DME injection, there is no changes in emissions and energy consumption rate even operated by homogeneous charge compression ignition.