• Title/Summary/Keyword: Homogeneous Solution

Search Result 561, Processing Time 0.027 seconds

Plate on non-homogeneous elastic half-space analysed by FEM

  • Wang, Yuanhan;Ni, Jun;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.127-139
    • /
    • 2000
  • The isoparametric element method is used for a plate on non-homogenous foundation. The surface displacement due to a point force acting on the non-homogeneous foundation is the fundamental solution. Based on this analysis, the interaction between the foundation and plate can be determined and the reaction of the foundation can be treated as the external force to the plate. Therefore, only the plate needs to be divided into some elements. The method presented in this paper can be used in cases such as thin or thick plate, different plate shapes, various loading, homogenous and non-homogenous foundations. The examples in this paper show that this method is versatile, efficient and highly accurate.

Homogeneous Magnet Design Technique Using Linear Programming (리니어프로그래밍을 이용한 균등자장 발생용 마그네트의 최적설계)

  • Lee, Sang-Jin;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.590-592
    • /
    • 2001
  • We introduce a technique for designing homogeneous magnets using linear programming. The method has several advantages over existing techniques including: it allows complete flexibility in arbitrary geometric constraints on both the coil locations and the shape of the homogeneous volume; it guarantees a globally optimal solution, and it automatically choose the minimum number of coils necessary for the constraints.

  • PDF

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

  • Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.527-548
    • /
    • 2021
  • In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective Brinkman-Forchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

Dynamic Stiffness of the Scaled Boundary Finite Element Method for Non-Homogeneous Elastic Space (비동질 탄성 무한공간에 대한 비례경계유한요소법의 동적강도행렬)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 2010
  • In this paper, the dynamic stiffness of scaled boundary finite element method(SBFEM) was analytically derived to represent the non-homogeneous space. The non-homogeneous parameters were introduced as an expotential value of power function which denoted the non-homogeneous properties of analysis domain. The dynamic stiffness of analysis domain was asymptotically expanded in frequency domain, and the coefficients of polynomial series were determined to satify the radiational condition. To verify the derived dynamic stiffness of domain, the numerical analysis of the typical problems which have the analytical solution were performed as various non-homogeneous parameters. As results, the derived dynamic stiffness adequatlly represent the features of the non-homogeneous space.

The Equilibrium Solution and the Stability Analysis of Reynolds Stress Equations for a Homogeneous Turbulent Shear Flow (난류 균일전단유동에 대한 레이놀즈 응력 모형방정식의 평형해와 안정성 해석)

  • 이원근;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.820-833
    • /
    • 1995
  • An analysis is performed to examine the equilibrium state and the stability of modeled Reynolds stress equations for homogeneous turbulent shear flows. The system of the governing equations consists of four coupled ordinary differential equations. The equilibrium states are found by the steady state solution of the governing equations. In order to investigate the stability of the system about its state in equilibrium, and eigenvalue problem is constructed. As a result, constraints for the coeffieients in the model equations are obtained by the stability condition of the equilibrium state as well as by their physically realizable bounds. It is observed that the models with pressure-strain rate correlation that are linear in the anisotropy tensor are stable and produce reasonable equilibrium tensor do not behave properly. Stability considerations about three most commonly used models are given in detail in the final section.

Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body

  • Al-Basyouni, K.S.;Ghandourah, E.;Mostafa, H.M.;Algarni, Ali
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • In this article, an analytical solution for the effect of the rotation on thermo-viscoelastic non-homogeneous medium with a spherical cavity subjected to periodic loading is studied. The distribution of displacements, temperature, redial stress, and hoop stress in non-homogeneous medium, in the context of generalized thermo-viscoelasticity using the GL theory, is discussed and obtained. The results are displayed graphically to illustrate the effect of the rotation. Comparisons with the previous work in the absence of rotation and viscosity are made.