• Title/Summary/Keyword: Homeotropic blended polyimide (PI)

Search Result 7, Processing Time 0.023 seconds

EO Characteristics in the Advanced Vertical Alignment VA-$\pi$ Cell on a Homeotropic Blended Polymer (수직 복합 폴리머 표면을 이용한 Advanced VA-$\pi$ cell의 전기광학 특성)

  • Lee, Kyung-Jun;Hwang, Jeoung-Yeon;Hahn, Eun-Joo;Paek, Seung-Kwon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.530-533
    • /
    • 2002
  • Blending effects for generating a pretilt angle in nematic liquid crystal (NLC) with negative dielectric anisotropy on the blended polyimide (PI) of homeotropic and homogeneous alignment surface were studied. Also, we investigated the EO performances for the advanced VA-$\pi$ cell using this homeotropic blended PI surface. A many decrease of tilt angle on the polymer surface to blend homeotropic PI and homogeneous PI with side chain type was measured, and the tilt angle decreased as blended ratio and rubbing strength increase. The blended effects for generating a pretilt angle were clearly observed, and the many decrease of tilt angle can be achieved by using the blended PI surface. The electro-optical (EO) characteristics using the advanced VA-$\pi$ cell using the homeotropic blended PI surface than that of conventional VA cell can be improved. We suggest that the developed advanced VA-$\pi$ cell on a homeotropic blended PI surface is a promising technique for the achievement of a fast response time, and a high contrast ratio.

  • PDF

EO Characteristics in the Vertical Alignment (VA)-$\pi$ mode LCD Using the Tilt Angle Decrease Effect on the Blended Polymer (혼합된 polymer에서의 틸트 감소 효과를 이용한 VA-$\pi$ mode LCD의 전기광학 특성)

  • Lee, Kyung-Jun;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.53-56
    • /
    • 2003
  • Blending effects for generating a pretilt angle in nematic liquid crystal (NLC) with negative dielectric anisotropy on the blended polyimide (PI) of homeotropic and homogeneous alignment surface were studied. Also, we investigated the EO performances for the advanced VA-$\pi$ cell using this homeotropic blended PI surface. A many decrease of tilt angle on the polymer surface to blend homeotropic PI and homogeneous PI with side chain type was measured, and the tilt angle decreased as blended ratio and rubbing strength increase. The blended effects for generating a pretilt angle were clearly observed, and the many decrease of tilt angle can be achieved by using the blended PI surface. The electro-optical (EO) characteristics using the advanced VA-$\pi$ cell using the homeotropic blended PI surface than that of conventional VA cell can be improved. We suggest that the developed advanced VA-$\pi$ cell on a homeotropic blended PI surface is a promising technique for the achievement of a fast response time, and a high contrast ratio.

  • PDF

EO Characteristic in the Advanced Vertical Alignment (VA)- π Cell a Homeotropic Blended Polymer (수직 복합폴리머 표면을 이용한 Advanced VA-π cell의 전기 광학 특성)

  • 황정연;이경준;조용민;서대식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.826-832
    • /
    • 2003
  • Blending effects for generating a pretilt angle in nematic liquid crystal (NLC) with negative dielectric anisotropy on the blended polyimide (PI) of homeotropic and homogeneous alignment surface were studied. Also, we investigated the EO performances for the advanced VA- $\pi$ cell using this homeotropic blended PI surface. A many decrease of tilt angle on the polymer surface to blend homeotropic PI and homogeneous PI with side chain type was measured, and the tilt angle decreased as blended ratio and rubbing strength increase. However, a small decrease of tilt angle on the polymer surface to blend homeotropic PI and homogeneous PI with main chain type was measured. The blended effects for generating a pretilt angle were clearly observed, and the many decrease of tilt angle can be achieved by using the blended PI surface. The electro-optical (EO) characteristics using the advanced VA- $\pi$ cell using the homeotropic blended PI surface than that of conventional VA cell can be improved. We suggest that the developed advanced VA-$\pi$ cell on a homeotropic blended PI surface is a promising technique for the achievement of a fast response time, and a high contrast ratio.

Study of Homeotropic Liquid Crystal Characteristics Using Photo-polymer and Homeotropic Polyimide Blended Alignment Layer via UV Irradiation Method (UV 광배향법을 통한 광폴리머와 수직 폴리이미드 혼합 배향막의 수직 배향 특성 연구)

  • Lee, Jin-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.996-999
    • /
    • 2012
  • From UV irradiation, we achieved homeotropic liquid crystal alignment on blended photo-polymer layer which is composed of polyvinyl-cinnamate (PVCi) and homeotropic polyimide (PI). From vertical alignment (VA) mode, we measured threshold voltages by various PVCi doping concentration. Also, the rise time and fall time of VA cells were measured to verify the best doping concentration. Transmittance curves showed about 70% value between 380 nm and 780 nm wavelength which mean visible region.

Generation of High Pretilt Angle for Nematic Liquid Crystal on Blended Polyimide Surfaces Containing Fluorine Moiety (Fluorine 계열의 폴리머를 함유한 복합 폴리이미드 표면에서의 네마틱 액정의 고 프리틸트 발생)

  • Hwang, Jeoung-Yeon;Lee, Kyung-Jun;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.949-952
    • /
    • 2002
  • The mechanisms of pretilt angle generation for a nematic liquid crystal (NLC) with negative dielectric anisotropy on the blended polyimide (PI) surface containing trifluoromethyl moiety was studied. High LC pretilt angle on the blended polymer surface with F3 was measured and the pretilt angle increased with rubbing strength. However, the low LC pretilt angle on the blended polymer surface with F1 and F2 was measured. The high LC pretilt angle generated is attributable to trifluoromethyl moiety in backbone structure on the blended PI surface. Therefore, the high pretilt angle of NLC can be achieved by using the blended polymer surface.

  • PDF

Mechanisms of Pretilt Angle Generation for Nematic Liquid Crystal on Blended Polyimide Surfaces Containing Fluorine Moiety (Fluorine 계열의 폴리머를 함유한 복합 폴리이미드 표면에서의 네마틱 액정의 프리틸트 발생의 메카니즘)

  • 황정연;이상극;서대식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.981-984
    • /
    • 2002
  • The mechanisms of pretilt angle generation for a nematic liquid crystal (NLC) with negative dielectric anisotropy on the blended polyimide (PI) surface containing trifluoromethyl moiety were studied. High LC pretilt angle on the blended polymer surface with F3 was measured and the pretilt angle increased with rubbing strength. However, the low LC pretilt angle on the blended polymer surface with F1 and F2 was measured. The high LC pretilt angle generated is attributable to trifluoromethyl moiety in backbone structure on the blended PI surface. Therefore, the high pretilt angle of NLC can be achieved by using the blended polymer surface.

Pretilt Angle Properties of Mixture Nematic Liquid crystal for Mobile Information Device (휴대용 통신단말에 사용되는 혼합액정계에서의 프리틸트각 특성에 관한 연구)

  • Han, Jeongmin;Seo, Daeshik
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.67-70
    • /
    • 2015
  • We studied the state of the dual liquid crystal (LC) alignment which displays both homeotropic and homogeneous alignment on blended polyimide (PI) layer. The research was conducted using rubbing method at different imidizing temperatures and the blended PI was made using homeotropic PI having an alkyl side chain and homogeneous PI without the side chain. The uniform LC alignments were achieved, and have thermal stability. The results of contact angles were similar to that of pretilt angles.