• 제목/요약/키워드: Homeodomain protein

검색결과 32건 처리시간 0.041초

The roles of homeodomain proteins during the clamp cell formation in a bipolar mushroom, Pholiota nameko

  • Yi, Ruirong;Mukaiyama, Hiroyuki;Tachikawa, Takashi;Shimomura, Norihiro;Aimi, Tadanori
    • 한국버섯학회지
    • /
    • 제9권1호
    • /
    • pp.3-16
    • /
    • 2011
  • In the bipolar basidiomycete Pholiota nameko, a pair of homeodomain protein genes located at the A mating-type locus regulates mating compatibility. In the present study, we used a DNA-mediated transformation system in P. nameko to investigate the homeodomain proteins that control the clamp formation. When a single homeodomain protein gene (A3-hox1 or A3-hox2) from the A3 monokaryon strain was introduced into the A4 monokaryon strain, the transformants produced many pseudo-clamps but very few clamps. When two homeodomain protein genes (A3-hox1 and A3-hox2) were transformed either separately or together into the A4 monokaryon, the ratio of clamps to the clamp-like cells in the transformants was significantly increased to approximately 50%. We, therefore, concluded that the gene dosage of homeodomain protein genes is important for clamp formation. When the sip promoter was connected to the coding region of A3-hox1 and A3-hox2 and the fused fragments were introduced into NGW19-6 (A4), the transformants achieved more than 85% clamp formation and exhibited two nuclei per cell, similar to the dikaryon (NGW12-163 ${\times}$ NGW19-6). The results of real-time RT-PCR confirmed that sip promoter activity is greater than that of the native promoter of homeodomain protein genes in P. nameko. So, we concluded that nearly 100% clamp formation requires high expression levels of homeodomain protein genes and that altered expression of the A mating-type genes alone is sufficient to drive true clamp formation.

The Homeobox and Genetic Disease: Structure and Dynamics of Wild Type and Mutant Homeodomain Proteins

  • Ferretti, James A.
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2001
  • Structural and physical properties of type wild type and various selected mutants of the vnd/NK-2 homeodomain, the protein product of the homeobox, and the implication in genetic disease are reviewed. The structure, dynamics and thermodynamics have been Investigated by NMR and by calorimetry. The interactions responsible for the nucleotide sequence-specific binding of the homeodomain to its consensus DNA binding site have been identified. There is a strong correlation between significant structural alterations within the homeodomain or its DNA complex and the appearance of genetic disease. Mutations in positions known to be important in genetic disease have been examined carefully For example, mutation of position 52 of vnd/NK-2 results in a significant structural modification and mutation of position 54 alters the DNA binding specificity and amity The $^{15}N$ relaxation behavior and heteronuclear Overhauser effect data was used to characterize and describe the protein backbone dynamics. These studies were carried out on the wild type and the double mutant proteins both in the free and in the DNA bound states. Finally, the thermodynamic properties associated with DNA binding are described for the vnd/NK-2 homeodomain. These thermodynamic measurements reinforce the hypothesis that water structure around a protein and around DNA significantly contribute to the protein-DNA binding behavior. The results, taken together, demonstrate that structure and dynamic studies of proteins combined with thermodynamic measurements provide a significantly more complete picture of the solution behavior than the individual studies.

  • PDF

Homeodomain-leucine Zipper Proteins Interact with a Plant Homologue of the Transcriptional Co-activator Multiprotein Bridging Factor 1

  • Zanetti, Maria Eugenia;Chan, Raquel L.;Godoy, Andrea V.;Gonzalez, Daniel H.;Casalongue, Claudia A.
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.320-334
    • /
    • 2004
  • StMBF1 (Solanum tuberosum multiprotein bridging factor 1) is a plant member of the MBF1 family of transcriptional co-activators. In an attempt to understand the role of StMBF1, we analyzed its interaction with plant transcription factors of the homeodomain-leucine zipper (Hd-Zip) family, a group of proteins with a typical leucine zipper motif adjacent to a homeodomain. StMBF1 is able to interact in vitro with the Hd-Zip protein Hahb-4 both in the presence and absence of DNA. Upon binding, StMBF1 increases the DNA binding affinity of Hahb-4, and of another plant homeodomain containing protein from the GL2/Hd-Zip IV family, HAHR-1. The biological role of interactions is discussed in this paper.

Kinetic analysis of Drosophila Vnd protein containing homeodomain with its target sequence

  • Yoo, Si-Uk
    • BMB Reports
    • /
    • 제43권6호
    • /
    • pp.407-412
    • /
    • 2010
  • Homeodomain (HD) is a highly conserved DNA-binding domain composed of helix-turn-helix motif. Drosophila Vnd (Ventral nervous system defective) containing HD acts as a regulator to either enhance or suppress gene expression upon binding to its target sequence. In this study, kinetic analysis of Vnd binding to DNA was performed. The result demonstrates that DNA-binding affinity of the recombinant protein containing HD and NK2-specific domain (NK2-SD) was higher than that of the full-length Vnd. To access whether phosphorylation sites within HD and NK2-SD affect the interaction of the protein with the target sequence, alanine substitutions were introduced. The result shows that S631A mutation within NK2-SD does not contribute significantly to the DNA-binding affinity. However, S571A and T600A mutations within HD showed lower affinity for DNA binding. In addition, DNA-binding analysis using embryonic nuclear protein also demonstrates that Vnd interacts with other nuclear proteins, suggesting the existence of Vnd as a complex.

Sequence-specific interaction between ABD-B homeodomain and castor gene in Drosophila

  • Kim, Keon-Hee;Yoo, Siuk
    • BMB Reports
    • /
    • 제47권2호
    • /
    • pp.92-97
    • /
    • 2014
  • We have examined the effect of bithorax complex genes on the expression of castor gene. During the embryonic stages 12-15, both Ultrabithorax and abdominal-A regulated the castor gene expression negatively, whereas Abdominal-B showed a positive correlation with the castor gene expression according to real-time PCR. To investigate whether ABD-B protein directly interacts with the castor gene, electrophoretic mobility shift assays were performed using the recombinant ABD-B homeodomain and oligonucleotides, which are located within the region 10 kb upstream of the castor gene. The results show that ABD-B protein directly binds to the castor gene specifically. ABD-B binds more strongly to oligonucleotides containing two 5'-TTAT-3' canonical core motifs than the probe containing the 5'-TTAC-3' motif. In addition, the sequences flanking the core motif are also involved in the protein-DNA interaction. The results demonstrate the importance of HD for direct binding to target sequences to regulate the expression level of the target genes.

Purification of Caudal-Related Homeodomain Transcription Factor and Its Binding Characterization

  • Jeong, Mi-Suk;Hwang, Eun-Young;Kim, Hyun-Tae;Yoo, Mi-Ae;Jang, Se-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1557-1564
    • /
    • 2009
  • Human CDX2 is known as a caudal-related homeodomain transcription factor that is expressed in the intestinal epithelium and is important in differentiation and maintenance of the intestinal epithelial cells. The caudal-related homeobox proteins bind DNA according to a helix-turn-helix structure, thereby increasing the structural stability of DNA. A cancer-tumor suppressor role for Cdx2 has been shown by a decrease in the level of the expression of Cdx2 in colorectal cancer, but the mechanism of transcriptional regulation has not been examined at the molecular level. We developed a large-scale system for expression of the recombinant, novel CDX2, in Escherichia coli. A highly purified and soluble CDX2 protein was obtained in E. coli strain BL21(DE3)RIL and a hexahistidine fusion system using Ni-NTA affinity column, anion exchange, and gel filtration chromatographies. The identity and secondary structure of the purified CDX2 protein were confirmed by MALDI-TOF MS, Western blot, and a circular dichroism analyses. In addition, we studied the DNA-binding activity of recombinant CDX2 by ELISA experiment and isolated human CDX2-binding proteins derived from rat cells by an immobilized GST-fusion method. Three CDX2-binding proteins were found in the gastric tissue, and those proteins were identified to the homeobox protein Hox-D8, LIM homeobox protein 6, and SMC1L1 protein.

Analysis of Mating System in Lentinula edodes and Development of Mating Type-Specific Markers

  • Ha, Byung-Suk;Kim, Sinil;Ro, Hyeon-Su
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.42-42
    • /
    • 2014
  • Mating of tetrapolar mushrooms is regulated by to chromosomal loci, A and B. A locus contains A gene that expresses a homeodomain protein whereas B locus contains multiple pheromones and receptor genes. In order to characterize the mating loci in Korean cultivated strains of Lentinula edodes, one hundred monokaryotic myclelia were isolated from the basidiospores of cultivated strains, including Cham-A-Ram, Sanjo701, and Sanjo707. Both mating loci were amplified using primer sets targeting conserved sequence regions for homeodomain (HD), pheromone, and receptor genes. Subsequent sequence analysis revealed that the Korean strains contained significant variations in the homeodomain of A locus, even within the same A1 or A2 mating type. Similarly, B locus was also highly diversified in the sequences of pheromones and receptors as well as gene organization. These results enabled us to design mating type-specific probes which can distinguish mating type of each strain. The specificity was confirmed by between intra- and inter-strain mating experiment.

  • PDF