References
- Chan, R. L., Gago, G. M., Palena, C. M. and Gonzalez, D. H. (1998) Homeoboxes in plant development. Biochim. Biophys. Acta 1442, 1-19. https://doi.org/10.1016/S0167-4781(98)00119-5
- Cormack, R. S., Hahlbrock, K. and Somssich, I. E. (1998) Isolation of putative plant transcriptional co-activators using a modified two-hybrid system incorporating a GFP reporter gene. Plant J. 14, 685-692. https://doi.org/10.1046/j.1365-313x.1998.00169.x
- Fields, S. and Song, O.-K. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245-246. https://doi.org/10.1038/340245a0
- Fields, S. and Sternglanz, R. (1994) The two-hybrid system: an assay for protein-protein interactions. Trends Genet. 10, 286-292. https://doi.org/10.1016/0168-9525(90)90012-U
- Gago, G. M., Almoguera, C., Jordano, J., Gonzalez, D. H. and Chan, R. (2002) Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant Cell Environ. 25, 633-640. https://doi.org/10.1046/j.1365-3040.2002.00853.x
- Gehring, W. J. (1987) Homeoboxes in the study of development. Science 236, 1245-1252. https://doi.org/10.1126/science.2884726
- Gehring, W. J., Qian, Y. Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A. F, Resendez-Perez D., Affolter, M., Otting, G. and Wuthrich, K. (1994) Homeodomain-DNA recognition. Cell 78, 211-223. https://doi.org/10.1016/0092-8674(94)90292-5
- Godoy, A. V., Zanetti, M. E., San Segundo, B. and Casalongue, C. (2001) A novel Solanum tuberosum transcriptional co-adaptor or co-activator is up-regulated in potato tubers by fungal infection and wounding. Physiol. Plantarum 112, 217-222. https://doi.org/10.1034/j.1399-3054.2001.1120210.x
- Harlow, E. and Lane, D. (1988) Antibodies. A laboratory Manual, 1st ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA.
- Kabe, Y., Goto, M., Shina, D., Imai, T., Wada, T., Morohashi, KI., Shirakawa, M., Hirose, S. and Handa, H. (1999) The role of human MBF1 as a transcriptional co-activator. J. Biol. Chem. 274, 34196-34202. https://doi.org/10.1074/jbc.274.48.34196
- Korfhage, U., Trezzini, G. F., Meier, I., Hahlbrock, K. and Somssich, I. E. (1994) Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene. Plant Cell 6, 695-708. https://doi.org/10.1105/tpc.6.5.695
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
- Lewin, B. (1990) Commitment and activation at pol II promoter: a tail of protein-protein interactions. Cell 61, 1161-1164. https://doi.org/10.1016/0092-8674(90)90675-5
- Li, F. -Q., Ueda, H. and Hirose, S. (1994) Mediators of activation of fushi tarazu gene transcription by BmFTz-F1. Mol. Cell. Biol. 14, 3013-3021.
- Matsushita,Y., Miyakawa, O., Deguchi, M., Nishiguchi, M. and Nyunoya, H. (2002) Cloning of a tobacco cDNA coding for a putative transcriptional co-activator MBF1 that interacts with the tomato mosaic virus movement protein. J. Exp. Bot. 53, 1531- 1532. https://doi.org/10.1093/jexbot/53.373.1531
- Palena, C. M., Chan, R. L. and Gonzalez, D. H. (1997) A novel type of dimerization motif, related to leucine zippers, is present in plant homeodomain proteins. Biochim. Biophys. Acta 1352, 203-212. https://doi.org/10.1016/S0167-4781(97)00012-2
- Palena, C. M., Gonzalez, D. H. and Chan, R. L. (1999) A monomer-dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA. Biochem. J. 341, 81-87. https://doi.org/10.1042/0264-6021:3410081
- Palena, C. M., Gonzalez, D. H., Guelman, S. and Chan, R. L. (1998) Expression of sunflower homeodomain containing proteins in Escherichia coli: Purification and functional studies. Protein Expres. Purif. 13, 97-103. https://doi.org/10.1006/prep.1998.0875
- Palena, C. M., Tron, A. E., Bertoncini, C. W., Gonzalez, D. H. and Chan, R. L. (2001) Positively charged residues at the Nterminal arm of the homeodomain are required for efficient DNA binding by homeodomain-leucine zipper proteins. J. Mol. Biol. 308, 39-47. https://doi.org/10.1006/jmbi.2001.4563
- Plesch, G., Störmann, K., Torres, J. T., Walden, R. and Somssich, I. E. (1997) Developmental and auxin-induced expression of the Arabidopsis thaliana prha homeobox gene. Plant J. 12, 635-647. https://doi.org/10.1046/j.1365-313X.1997.d01-15.x
- Qian, Y. Q., Billeter, M., Otting, G., Muller, M., Gehring, W. J., and Wuthrich, K. (1989) The structure of the Antennapedia homeodomain determined by MNR spectroscopy in solution: comparison with prokaryotic repressors. Cell 59, 573-580. https://doi.org/10.1016/0092-8674(89)90040-8
- Roeder, R. G. (1991) The complexities of eukaryotic transcription initiation: regulation of preinitiation of complex assembly. Trends Biochem. Sci. 16, 402-408. https://doi.org/10.1016/0968-0004(91)90164-Q
- Ruberti, I., Sessa, G., Lucchetti, S. and Morelli, G. (1991) A novel class of proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J. 10, 1787-1791.
- Schena, M. and Davis, R. W. (1992) HD-Zip proteins: Members of an Arabidopsis homeodomain protein superfamily. Proc. Natl. Acad. Sci. USA 89, 3894-3898. https://doi.org/10.1073/pnas.89.9.3894
- Sedmak, J. and Grossberg, S. (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G-250. Anal. Biochem. 79, 544-552. https://doi.org/10.1016/0003-2697(77)90428-6
- Sessa, G., Morelli, G. and Ruberti, I. (1993) The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO J. 12, 3507-3517.
- Soderman, E., Mattsson, J. and Engstrom, A. (1996) The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J. 10, 375-381. https://doi.org/10.1046/j.1365-313X.1996.10020375.x
- Somssich, I. E. (1994) Regulatory elements governing pathogenesis-related (PR) gene expression; in Results and Problems in Cell Differentiation, Nover L. (ed.), pp. 163-179, Springer-Verlag, Berlin, Germany.
- Takemaru, K., Harashima, S., Ueda, H. and Hirose, S. (1997) Multiprotein bridging factor 1 (MBF1) is an evolutionarily conserved transcriptional co-activator that connects a regulatory factor and TATA element-binding protein. Proc. Natl. Acad. Sci. USA 94, 7251-7256. https://doi.org/10.1073/pnas.94.14.7251
- Takemaru, K., Harashima, S., Ueda, H. and Hirose, S. (1998) Yeast co-activator MBF1 mediates GCN4-dependent transcriptional activation. Mol. Cell. Biol. 18, 4971-4976.
- Valle, E. M., Gonzalez, D. H., Gago, G. and Chan, R. L. (1997) Isolation and expression pattern of hahr1, a homeobox containing cDNA from Helianthus annuus. Gene 196, 61-68. https://doi.org/10.1016/S0378-1119(97)00193-5
- Zanetti, M. E., Blanco, F. A., Daleo, G. R. and Casalongue C. A. (2003) Phosphorylation of a member of the MBF1 transcriptional co-activator family, StMBF1, is stimulated in potato cell suspensions upon fungal elicitor challenge. J. Exp. Bot. 54, 623-632. https://doi.org/10.1093/jxb/erg061
- Zegzouti, H., Jones, B., Frasse, P., Marty, C., Maitre, B., Latche, A., Pech, J. C. and Bouzayen, M. (1999) Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripening-related genes isolated by differential display. Plant J. 18, 589-600. https://doi.org/10.1046/j.1365-313x.1999.00483.x
- Zhu, G., LaGier, M. J., Hirose, S. and Keithly, J. S. (2000) Cryptosporidium parvum: functional complementation of the parasite transcriptional co-activator CpMBF1 in yeast. Exp. Parasitol. 96, 195-201. https://doi.org/10.1006/expr.2000.4574
Cited by
- Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions vol.10, pp.1, 2010, https://doi.org/10.1007/s10142-009-0134-y
- Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli vol.190, pp.4, 2011, https://doi.org/10.1111/j.1469-8137.2011.03733.x
- Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection vol.197, 2012, https://doi.org/10.1016/j.plantsci.2012.08.013