• Title/Summary/Keyword: Hollow silicon

Search Result 35, Processing Time 0.028 seconds

The Permeation Behaviors of $H_2S/CH_4$ using Polyimide Hollow Fiber Membranes (폴리이미드 중공사막을 이용한 $H_2S/CH_4$ 투과거동에 관한 연구)

  • Lee, Hyung-Keun;An, Young-Mo;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Park, Yeong-Seong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.261-267
    • /
    • 2009
  • Polyimide which is the glassy polymer has high chemical resistance, thermal stability and high mechanical property. In this study, the polyimide hollow fiber membranes were prepared by the dry-jet wet phase inversion in order to investigate the permeation porperties of the $H_2S$ and $CH_4$. The morphology of prepared hollow fiber membranes and their permeation behaviors of $H_2S$ and $CH_4$ before and after silicon coating were evaluated. The permeance of $H_2S$ and $H_2S/CH_4$ selectivity increased due to plasticization with increasing the feed pressure. The permeance of KSM03b and selectivity of KSM03d were highest among the three type membranes used this experiments. The permeance decreased but the $H_2S/CH_4$ selectivity increased with increasing the air gap. The permeance reduced after silicon coating. However, the selectivity increased and the selectivity of KSM03d was 275 at 7 atm.

Flexural Strength of Macroporous Silicon Carbide Ceramics (거대기공 다공질 탄화규소 세라믹스의 꺾임강도)

  • Lim, Kwang-Young;Kim, Young-Wook;Song, In-Hyuck;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.360-367
    • /
    • 2011
  • Macroporous silicon carbide (SiC) ceramics were fabricated by powder processing and polymer processing using carbon-filled polysiloxane as a precursor. The effects of the starting SiC polytype, template type, and template content on porosity and flexural strength of macroporous SiC ceramics were investigated. The ${\beta}$-SiC powder as a starting material or a filler led to higher porosity than ${\alpha}$-SiC powder, owing to the impingement of growing ${\alpha}$-SiC grains, which were transformed from ${\beta}$-SiC during sintering. Typical flexural strength of powder-processed macroporous SiC ceramics fabricated from ${\alpha}$-SiC starting powder and polymer microbeads was 127 MPa at 29% porosity. In contrast, that of polymer-processed macroporous SiC ceramics fabricated from carbon-filled polysiloxane, ${\beta}$-SiC fillers, and hollow microspheres was 116MPa at 29% porosity. The combination of ${\alpha}$-SiC starting powder and a fairly large amount (10 wt%) of $Al_2O_3-Y_2O_3$ additives led to macroporous SiC ceramics with excellent flexural strength.

Effects of Si cluster incorporation on properties of microcrystalline silicon thin films

  • Kim, Yeonwon;Yang, Jeonghyeon;Kang, Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.181-181
    • /
    • 2016
  • Hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films have attracted much attention as materials of the bottom-cells in Si thin film tandem photovoltaics due to their low bandgap and excellent stability against light soaking. However, in PECVD, the source gas $SiH_4$ must be highly diluted by $H_2$, which eventually results in low deposition rate. Moreover, it is known that high-rate ${\mu}c-Si:H$ growth is usually accompanied by a large number of dangling-bond (DB) defects in the resulting films, which act as recombination centers for photoexcited carriers, leading to a deterioration in the device performance. During film deposition, Si nanoparticles generated in $SiH_4$ discharges can be incorporated into films, and such incorporation may have effects on film properties depending on the size, structure, and volume fraction of nanoparticles incorporated into films. Here we report experimental results on the effects of nonoparticles incorporation at the different substrate temperature studied using a multi-hollow discharge plasma CVD method in which such incorporation can be significantly suppressed in upstream region by setting the gas flow velocity high enough to drive nanoparticles toward the downstream region. All experiments were performed with the multi-hollow discharge plasma CVD reactor at RT, 100, and $250^{\circ}C$, respectively. The gas flow rate ratio of $SiH_4$ to $H_2$ was 0.997. The total gas pressure P was kept at 2 Torr. The discharge frequency and power were 60 MHz, 180 W, respectively. Crystallinity Xc of resulting films was evaluated using Raman spectra. The defect densities of the films were measured with electron spin resonance (ESR). The defect density of fims deposited in the downstream region (with nonoparticles) is higher defect density than that in the upstream region (without nanoparticles) at low substrate temperature of RT and $100^{\circ}C$. This result indicates that nanoparticle incorporation can change considerably their film properties depending on the substrate temperature.

  • PDF

Process Development of Wastewater Containing Silicon Fine Particles by Ultrafiltration for Water Reuse -III. Permeation Characteristics of Pilot Scale Hollow Fiber Membrane Modules- (한외여과에 의한 Si 미립자 함유폐수 재이용 공정개발(III) -Pilot-Scale 중공사막 모듈에 의한 투과 특성)

  • 전재홍;함용규;이석기;박영태;남석태;최호상
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.185-192
    • /
    • 1999
  • The ultrafiltration characteristics of wafer processing wastewater produced from semicon¬ductor industry was investigated for wastewater reuse. Using the pilot-scale ultrafiltration system con¬taining poly sulfone hollow fiber membranes (MWCO : 10,000, 20,000, 30,(00), the membrane performance, such as flux, rejection rate and concentration factor for flux was examined. The SDhs, turbidity, electrical conductivity and concentration of Si particles were measured, and the possibility of permeate reuse was validated from the experimental results. It was shown that the flux was recovered by the sweeping with air and water effectively. The permeate flux of 30,000 MWCO membrane was about 5 times higher than that of 10,000 and 20,000 MWCO membranes. The concentration of Si particle in the saw wastewater was analyzed 3.8-5.6 mg/$\ell$ and that of Si particle in the permeate was analyzed less than 0.2${\mu}g$/$\ell$. This means the rejection of silicon particle was over 96%.

  • PDF

Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content (Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심)

  • Song, In-Hyuck;Park, Mi-Jung;Kim, Hai-Doo;Kim, Young-Wook;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.546-552
    • /
    • 2010
  • The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

HCM(hollow cathode magnetron sputtering)방식으로 증착한 titanium 박막의 특성연구

  • 최효직;고대홍;최시영;최승만
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.63-63
    • /
    • 2000
  • Deep submicron device contact hole에서의 bottom step coverage의 향상 및 SALICIDE공정의 필요성에 의해 collimated sputtering 및 ionized sputtering 등의 다양한 증착방법이 연구되어왔다. 반도체소자의 고집적화 및 미세화에 따라서 기존의 증착방법보다 더 높은 throughput을 가진 새로운 증착방법의 필요성이 대두되고 있다. Collimated sputtering방식으로 증착한 박막의 경우에는 증착속도가 느리고 collimator의 사용기간에 따른 공정조건의 변화가 단점으로 작용하였고 새로이 ionzied sputtering방식이 개발되었다. ionzied sputtering방식은 증착되는 금속 입자를 이온화시키고 기판에 바이어스를 걸어서 증착되는 입자의 방향성 및 증착속도의 향상을 얻을 수 있었다. 하지만 고집적도가 더욱 증가함에 따라서 더 높은 박막의 증착속도, bottom step coverage의 향상, 방향성의 향상과 더불어 증착되는 입자의 이온화 율의 증가 및 기존의 증착방식에 의한 박막보다 향상된 물성을 가진 박막증착의 필요성에 의해 hollow cathode magnetron sputtering방식이 연구되었다. HCM방식으로 titanium 박막을 증착하여 collimated sputtering 및 ionize sputtering 방식으로 증착한 titanium 박막과 물성을 비교해서 증착방식에 따른 박막물성의 차이를 연구하였다. 증착전에 기판온도는 30$0^{\circ}C$를 유지하였고 base pressure는 5.0$\times$10-9torr, working pressure는 5.7m torr로 유지하였다. power는 30kW를 가하여 50nm두께의 titanium박막을 증착하였다. 증착된 박막의 미세구조는 TEM 및 XRD로 분석하였다. HCM방식으로 증착한 titanium박막은 5nm두께의 비정질 층이 관찰되었고 ionized sputtering방식으로 증착한 titatnium박막에서 나타나는 것으로 보고된 silicon (002)와 titanium (0002) eledtron diffraction spot사이의 (10-10)spot은 관찰되지 않았다. 박막은 크고 작은 grain의 연속적 분포를 가졌고 HCM방식으로 증착한 titanium박막의 in-plane grain size가 다른 증착방식으로 증착한 박막에 비해 크게 관찰됨을 Plan-view TEM 분석을 통해서 확인되었다.

  • PDF

Study on Basic Characteristics of Hollow Piezoelectric Actuator for Driving Nanoscale Stamp (나노스템프 구동용 중공형 압전액추에이터 기본특성에 관한 연구)

  • Park, Jung-Ho;Lee, Hu-Seung;Lee, Jae-Jong;Yun, So-Nam;Ham, Young-Bog;Jang, Sung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1015-1020
    • /
    • 2011
  • Nanoimprint lithography has been actively investigated. This method can replicate a nanopatterned master stamp onto a thin polymer film on a silicon substrate and so on. In this study, a square-shaped hollow piezoelectric actuator is presented, which is newly developed. This actuator is used for driving a nanoscale stamp in nanoimprint lithography instead of a conventional electric motor. The fabricated prototype actuator has 95 layers and side lengths of 23 mm and 18 mm for the outer and inner squares, respectively. By adopting a novel process instead of the conventional forming process for fabricating a one-layer actuator, the one-layer is composed of four rectangular segments produced by sawing a ceramic film with a thickness of 0.3 mm. The basic characteristics on displacement and generation force of the fabricated prototype actuator are experimentally investigated. Furthermore, the displacement characteristics obtained by using a PI controller are tested and discussed.

Preparation of PES Hollow Fiber Membranes and Their $O_2/N_2$ Permeation Properties (폴리이서설폰 중공사막의 제조 및 $O_2/N_2$ 투과특성)

  • Park, Sung-Ryul;Chang, Bong-Jun;Ahn, Hyo-Seong;Kim, Dong-Kwon;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.62-71
    • /
    • 2011
  • Highly enriched oxygen is used in energy-efficient combustion due to decreased non-flammable nitrogen, while high purity nitrogen is used for explosion proof in the LNG ships and keeping the freshness of green stuffs. Membrane technology can be used in these $O_2$ and $N_2$ generation with low energy consumption. In this study, PES was used as a membrane material and 1-methyl-2-pyrollidone (NMP) and acetone were employed as a good solvent and nonsolvent addictive (swelling agent to PES), respectively. Dope solutions were prepared by changing the content of acetone (0, 6.5, 15, 25, 31.5 wt%) in 37 wt% PES solutions. Hollow fiber spinning was performed at 0~10 cm of air-gap distances for each dope solution. $O_2/N_2$ selectivity and permeability were investigated by comparing of hollow fibers coated or not by silicons. $O_2/N_2$ selectivity increased and permeance of $O_2$ and $N_2$ decreased with increasing air-gap height independently of acetone addictions. Optimized PES hollow fibers were obtained with 37/6.5/56.5 wt% PES/acetone/NMP dope solution and 10 cm air-gap, which showed 7.3 of $O_2/N_2$ selectivity and 4.3 GPU of $O_2$ permeability after silicon coating.

A New PIM Joining Process

  • Miura, Hideshi
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.203-210
    • /
    • 2002
  • A new PIM in-process joining technique has been developed for more complicated and functional PIM components by application of the exuded wax from the green compacts during solvent debinding step. At first, various stainless steels and iron compacts with rectangular shape were combined, and the joining behaviors and properties were investigated by shear and tensile test, and microscopic observation. Subsequently, perfect joined three pieces of thin and hollow compacts were obtained for the combination of same and different stainless steels, and it was difficult to join the iron and stainless steel compacts in hydrogen atmosphere because of the different starting temperature of shrinkage. However, pretty good joined iron and stainless steel compacts were obtained by consideration of particle size and vacuum atmosphere. Finally, for the combination of ferro-silicon and austenitic stainless steel compacts, high functionality (magnetic (1.60Tes1a) & non-magnetic) and perfect joint were obtained.

The Transmissibility of Rubber Damper in the Compact Disc Player (컴팩트 디스크 플레이어 고무댐퍼의 전달율)

  • Lee, Tae-Keun;Kim, Byoung-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2008
  • The vibration and disturbances from operating the compact disk layer have an effect on the play ability. As the excitation sources of the compact disk player, there are the vibration of the motors and gears, impact by mechanical parts and the external excitations. So, most of the compact disk player have a anti-vibrational system, which is included some rubber or oil dampers. In this study, the vibration characteristics of rubber damper which is used home compact disk player are investigated. The materials and shape of rubber damper are changed, and the transmissibility is measured. As a conclusion, the natural frequency is moved to higher frequency and the transmissibility is reduced by the increasing rubber stiffness. In comparison to butyl rubber damper, the transmissibility of silicon damper was increased by larger restitution elasticity. The hollow damper was effective to reduced the transmissibility.