• Title/Summary/Keyword: Hole selective solar cells

Search Result 9, Processing Time 0.027 seconds

Hole Selective Contacts: A Brief Overview

  • Sanyal, Simpy;Dutta, Subhajit;Ju, Minkyu;Mallem, Kumar;Panchanan, Swagata;Cho, Eun-chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Carrier selective solar cell structure has allured curiosity of photovoltaic researchers due to the use of wide band gap transition metal oxide (TMO). Distinctive p/n-type character, broad range of work functions (2 to 7 eV) and risk free fabrication of TMO has evolved new concept of heterojunction intrinsic thin layer (HIT) solar cell employing carrier selective layers such as $MoO_x$, $WO_x$, $V_2O_5$ and $TiO_2$ replacing the doped a-Si layers on either front side or back side. The p/n-doped hydrogenated amorphous silicon (a-Si:H) layers are deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD), which includes the flammable and toxic boron/phosphorous gas precursors. Due to this, carrier selective TMO is gaining popularity as analternative risk-free material in place of conventional a-Si:H. In this work hole selective materials such as $MoO_x$, $WO_x$ and $V_2O_5$has been investigated. Recently $MoO_x$, $WO_x$ & $V_2O_5$ hetero-structures showed conversion efficiency of 22.5%, 12.6% & 15.7% respectively at temperature below $200^{\circ}C$. In this work a concise review on few important aspects of the hole selective material solar cell such as historical developments, device structure, fabrication, factors effecting cell performance and dependency on temperature has been reported.

Characteristics of VOx Thin Film, NiOx Thin Film, and CuIx Thin Film for Carrier Selective Contacts Solar Cells (전하선택접촉 태양전지 적용을 위한 VOx 박막, NiOx 박막, CuIx 박막의 특성 연구)

  • Kiseok Jeon;Minseob Kim;Eunbi Lee;Jinho Shin;Sangwoo Lim;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.39-43
    • /
    • 2023
  • Carrier-selective contacts (CSCs) solar cells are considerably attractive on highly efficient crystalline silicon heterojunction (SHJ) solar cells due to their advantages of high thermal tolerance and the simple fabrication process. CSCs solar cells require a hole selective contact (HSC) layer that selectively collects only holes. In order to selectively collect holes, it must have a work function characteristic of 5.0 eV or more when contacted with n-type Si. The VOx, NiOx, and CuIx thin films were fabricated and analyzed respectively to confirm their potential usage as a hole-selective contact (HSC) layer. All thin films showed characteristics of band-gap engergy > 3.0 eV, work function > 5.0 eV and minority carrier lifetime > 1.5 ms.

Research and Development Trend of Carrier Selective Energy Contact Solar Cells (전하선택형 태양전지의 연구개발 동향)

  • Cho, Eun-Chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • The traditional silicon heterojunction solar cells consist of intrinsic amorphous silicon to prevent recombination of the silicon surface and doped amorphous silicon to transport the photo-generated electrons and holes to the electrode. Back contact solar cells with silicon heterojunction exhibit very high open-circuit voltages, but the complexity of the process due to form the emitter and base at the backside must be addressed. In order to solve this problem, the structure, manufacturing method, and new materials enabling the carrier selective contact (CSC) solar cell capable of achieving high efficiency without using a complicated structure have recently been actively developed. CSC solar cells minimize carrier recombination on metal contacts and effectively transfer charge. The CSC structure allows very low levels of recombination current (eg, Jo < 9fA/cm2), thereby achieves high open-circuit voltage and high efficiency. This paper summarizes the core technology of CSC solar cell, which has been spotlighted as the next generation technology, and is aiming to speed up the research and development in this field.

A Study on the Selective Hole Carrier Extraction Layer for Application of Amorphous/crystalline Silicon Heterojunction Solar Cell (이종접합 실리콘 태양전지 적용을 위한 선택적 전하접합 층으로의 전이금속산화물에 관한 연구)

  • Kim, Yongjun;Kim, Sunbo;Kim, Youngkuk;Cho, Young Hyun;Park, Chang-kyun;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.192-197
    • /
    • 2017
  • Hydrogenated Amorphous Silicon (a-Si:H) is used as an emitter layer in HIT (heterojunction with Intrinsic Thin layer) solar cells. Its low band gap and low optical properties (low transmittance and high absorption) cause parasitic absorption on the front side of a solar cell that significantly reduces the solar cell blue response. To overcome this, research on CSC (carrier Selective Contacts) is being actively carried out to reduce carrier recombination and improve carrier transportation as a means to approach the theoretical efficiency of silicon solar cells. Among CSC materials, molybdenum oxide ($MoO_x$) is most commonly used for the hole transport layer (HTL) of a solar cell due to its high work function and wide band gap. This paper analyzes the electrical and optical properties of $MoO_x$ thin films for use in the HTL of HIT solar cells. The optical properties of $MoO_x$ show better performance than a-Si:H and ${\mu}c-SiO_x:H$.

Characteristics of Vanadium Oxide Grown by Atomic Layer Deposition for Hole Carrier Selective Contacts Si Solar Cells (실리콘 전하선택접합 태양전지 적용을 위한 원자층 증착법으로 증착된 VOx 박막의 특성)

  • Park, Jihye;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.660-665
    • /
    • 2020
  • Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 µs after post-deposition annealing (PDA) at 100 ℃. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 ℃ the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 ℃, and 5:5 for annealing at 300 ℃. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.

Heterojunction Solar Cell with Carrier Selective Contact Using MoOx Deposited by Atomic Layer Deposition (원자층 증착법으로 증착된 MoOx를 적용한 전하 선택 접합의 이종 접합 태양전지)

  • Jeong, Min Ji;Jo, Young Joon;Lee, Sun Hwa;Lee, Joon Shin;Im, Kyung Jin;Seo, Jeong Ho;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.322-327
    • /
    • 2019
  • Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[$Mo(CO)_6$] as precursor and ozone($O_3$) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the $Mo^{6+}$ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from $576^{\circ}C$ to $620^{\circ}C$ at 250 g/Nm after post-deposition annealing at $350^{\circ}C$ in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.

Current Status of Emitter Wrap-Through c-Si Solar Cell Development (에미터 랩쓰루 실리콘 태양전지 개발)

  • Cho, Jaeeock;Yang, Byungki;Lee, Honggu;Hyun, Deochwan;Jung, Woowon;Lee, Daejong;Hong, Keunkee;Lee, Seong-Eun;Hong, Jeongeui
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.17-26
    • /
    • 2013
  • In contrast to conventional crystalline cells, back-contact solar cells feature high efficiencies, simpler module assembly, and better aesthetics. The highest commercialized cell and module efficiency was recorded by n-type back-contact solar cells. However, the mainstream PV industry uses a p-type substrate instead of n-type due to the high costs and complexity of the manufacturing processes in the case of the latter. P-type back-contact solar cells such as metal wrap-through and emitter wrap-through, which are inexpensive and compatible with the current PV industry, have consequently been developed. In this paper the characteristics of EWT (emitter wrap-through) solar cells and their status and prospects for development are discussed.

Electrode formation using Light induced electroless plating in the crystalline silicon solar cells

  • Jeong, Myeong-Sang;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.1-347.1
    • /
    • 2016
  • Screen printing is commonly used to form the electrode for crystalline silicon solar cells. However, it has caused high resistance and low aspect ratio, resulting in decrease of conversion efficiency. Accordingly, Ni/Cu/Ag plating method could be applied for crystalline silicon solar cells to reduce contact resistance. For Ni/Cu/Ag plating, laser ablation process is required to remove anti-reflection layers prior to the plating process, but laser ablation results in surface damage and then decrease of open-circuit voltage and cell efficiency. Another issue with plating process is ghost plating. Ghost plating occurred in the non-metallized region, resulting from pin-hole in anti-reflection layer. In this paper, we investigated the effect of Ni/Cu/Ag plating on the electrical properties, compared to screen printing method. In addition, phosphoric acid layer was spin-coated prior to laser ablation to minimize emitter damage by the laser. Phosphorous elements in phosphoric acid generated selective emitter throughout emitter layer during laser process. Then, KOH treatment was applied to remove surface damage by laser. At this step, amorphous silicon formed by laser ablation was recrystallized during firing process and remaining of amorphous silicon was removed by KOH treatment. As a result, electrical properties as Jsc, FF and efficiency were improved, but Voc was lower than screen printed solar cells because Voc was decreased due to surface damage by laser process. Accordingly, we expect that efficiency of solar cells could be improved by optimization of the process to remove surface damage.

  • PDF

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF