• 제목/요약/키워드: Hole Design

검색결과 907건 처리시간 0.026초

손상 허용 설계를 적용한 복합재 날개의 정하중 시험 (Static Test of a Composite Wing with Damage Tolerance Design)

  • 박민영
    • 한국항공우주학회지
    • /
    • 제46권6호
    • /
    • pp.471-478
    • /
    • 2018
  • 본 연구에서는 복합재 날개 구조물에 손상허용설계를 적용하고 이를 입증하기 위한 정하중 시험을 수행하였다. 복합재 날개 구조의 정적강도를 입증하기 위하여 5 조건의 설계 제한하중 시험과 3 조건의 설계 극한하중 시험을 수행하였다. 그 다음으로 손상허용 설계를 입증하기 위하여 관련 규정에 따라서 복합재 주익 주요 취약부위에 BVID 10개, Open hole 11개를 생성 후, 설계 극한하중 시험과 파단시험을 실시하였다. 날개 주요 부위의 변위 및 변형률 시험 결과는 구조해석 결과와 비교적 잘 일치하였으며, 파단시험의 최초 파단부위도 최소안전여유를 갖는 부위에서 발생하여 구조해석 모델 및 강도평가 결과가 실제 구조의 정적 거동과 유사함을 확인하였다.

쾌속조형 듀라폼 성형체에서의 배치각 변화에 따른 주얼리주조모형의 형상요소변화 (Jewelry Model Cast Elements Evolution with Alignment Angle in DuraForm Rapid Prototyping)

  • 주영철;송오성
    • 한국주조공학회지
    • /
    • 제21권5호
    • /
    • pp.290-295
    • /
    • 2001
  • We fabricated test samples containing various shape elements and surface roughness checking points for the jewelry cast master patterns by employing the 3D computer aided design (CAD), selective laser sintering (SLS) rapid prototype (RP) with the DuraForm powders. We varied the alignment angle from $0^{\circ}$ to $10^{\circ}$ at a given layer thickness of 0.08 and 0.1mm, respectively, in RP operation. Dimensions of the shape elements as well as values of surface roughness are characterized by an optical microscope and a contact-scanning profilometer. Surface roughness values of the top and vertical face increased as the alignment angle increased, while the other roughness values and shape elements variation were not depending on the alignment angle. The resolution of the shape realization was enhanced as the layer thickness became smaller. The minimum diameter of the hole, common in jewelry design, was 1.2 mm, and the shrinkage became 12% at the 1.6 mm-diameter hole, Our results implied that we face down the proposed design elements with $0^{\circ}$ alignment angle, and consider the shrinkage effect of each shape element in DuraForm RP jewelry modeling.

  • PDF

설계인자변화에 따른 엔진 벌크헤드 내구성 향상 (Durability Improvement of Engine Bulkhead by Adjusting Design Parameters)

  • 양철호;한문식
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.111-116
    • /
    • 2011
  • Three-dimensional finite element analyses have been performed to improve the durability of bulkhead. To keep pace with design changes and concentrate on regions of interest, SUBMODEL technique in ABAQUS was used for analysis. An analysis was conducted with following load cases: 1) Cap press-fit, 2) Bearing crush, 3) Bolt assembly, 4) Hot assembly, 5) Firing load, 6) Alternating firing load, 7) 2nd hot assembly. Fatigue analysis was done using commercial software FEMFAT and fatigue factors at the interested regions such as bolt tip area, counter bore, breathing hole, honing clearance were calculated and compared to aid design validation. Finite element modeling in the area of thread engagement used a simple constraint equations. Increasing bolt length, to a minimum of 39 mm above joint face gives a better fatigue resistance to the bulkhead. Breathing hole helps not only circulate the air in the crankcase but also fatigue resistance of bulkhead by relieving the stress at the critical locations.

누출사고 시 저장탱크 위험물 누출속도를 고려한 탱크와 방유제 사이 간격에 관한 연구 (A Study of the Distance between a Tank and a Dike Considering a Leakage Velocity at an Opening Hole in case of a Leakage Accident)

  • 이재열;김동현;반순희;이창준
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.35-41
    • /
    • 2018
  • Chemical accidents generated during maintenance, repair, and normal operation, such as dispersion, fire, and explosions, can cause massive losses like a 2012 hydro fluorine leak in Gumi, South Korea. Since this accident, many researches have studied physical mitigation systems. However, due to the lack of potential costs and time, it is really hard for many companies to install mitigation systems without prior knowledge. Thus, the efficacy of mitigation system should be evaluated. This study assesses a dike design considering the fluid velocity at an open hole when a leakage accident occurs. It is assumed that leakage materials follow a free fall motion. Throughout case studies, a current KOSHA guide for a dike design was evaluated and new guidelines handling various conditions were proposed.

다공 Al 컨덴서 튜브의 압출공정 해석 (Extrusion Process Analysis for Al Condenser Tube with Multi Hole)

  • 배재호;이정민;김병민
    • 소성∙가공
    • /
    • 제13권8호
    • /
    • pp.723-730
    • /
    • 2004
  • This paper describes the analysis of extrusion process and integrity for a condenser tube which is a component of the heat exchanger in automobile and all conditioning apparatus. Recently, according to the development of analysis method using the computer, the numerical simulation have been applied to the 3-dimensional hot extrusion process with complex section area of the non-steady statement and then results of the analysis have been applied to optimal die design and process design. In this paper, firstly, the die design was performed for a condenser tube with a multi-hole section and the rigid-plasticity FE analysis performed of extrusion process. Secondly, we estimated metal flow of billet, extrusion load, welding pressure in chamber etc. and evaluated the pressure and elastic strain of the die land and mandrel tooth profile through a stress analysis of the die. Finally, the extrusion test was performed to estimate the validity of FE analysis. This paper confirmed that the designed extrusion die of the research is satisfactorily designed fur integrity of condenser tube.

Specific Process Conditions for Non-Hazardous Classification of Hydrogen Handling Facilities

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Safety and Health at Work
    • /
    • 제12권3호
    • /
    • pp.416-420
    • /
    • 2021
  • Hazardous area classification design is required to reduce the explosion risk in process plants. Among the international design guidelines, only IEC 60079-10-1 proposes a new type of zone, namely zone 2 NE, to prevent explosion hazards. We studied how to meet the zone 2 NE grade for a facility handling hydrogen gas, which is considered as most dangerous among explosive gases. Zone 2 NE can be achieved considering the grade of release, as well as the availability and effectiveness of ventilation, which are factors indicative of the facility condition and its surroundings. In the present study, we demonstrate that zone 2 NE can be achieved when the degree of ventilation is high by accessing temperature, pressure, and size of leak hole. The release characteristic can be derived by substituting the process condition of the hydrogen gas facility. The equations are summarized considering relation of the operating temperature, operating pressure, and size of leak hole. Through this relationship, the non-hazardous condition can be realized from the perspective of inherent safety by the combination of each parameter before the initial design of the hydrogen gas facility.

RuO2-Doped TiO2 Nanotube Membranes Prepared via a Single-Step/Potential Shock Sequence

  • Yoo, Hyeonseok;Seong, Mijeong;Choi, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.271-275
    • /
    • 2019
  • Anodic $TiO_2$ nanotubes were simultaneously grown and doped with $RuO_2$ by single-step anodization in a negatively-charged $RuO_4{^-}$ precursor. Subsequently, a high positive voltage was imposed on the nanotubes in an $F^-$-based electrolyte (a process referred to as potential shock), which led to the formation of a through-hole $RuO_2$-doped $TiO_2$ nanotube membrane without significant loss of the $RuO_2$ catalyst. XPS results confirmed that the doped Ru metal was converted into $RuO_2$ as the potential shock voltage increased. Further increases in the potential shock voltage led to the formation of $RuO_x/Ru$ in the $TiO_2$ nanotubes. All of our results clearly showed that a through-hole catalyst-doped $TiO_2$ nanotube membrane can be produced by a sequence consisting of single-step anodization and the potential shock process.

현장타설말뚝의 설계 (Design of Drilled Shafts)

  • 김명학;김원철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 기초기술위원회 워크샵
    • /
    • pp.140-167
    • /
    • 2002
  • A drilled shaft is a deep foundation that is constructed by placing fluid concrete in a drilled hole. Reinforcing steel can be installed in the excavation, if desired, prior to placing the concrete. Drilled shafts provide excellent foundation systems for civil structures. In order to utilize them effectively, it is essential that designers have a clear understanding for how drilled shafts are constructed and also understand the basis for design methods. This paper describes standard design methods for drilled shafts.

  • PDF

A Case study of an optimal design with structured sampling and simulation

  • Park, Hongjoon;Youngcook Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.46.4-46
    • /
    • 2002
  • This study was motivated how it might be possible to validate structured sampling with orthogonal array for optimal design of a pin. The Taguchi method by orthogonal array, one of the structured sampling methods, has much advantage that is row cost and time saving for experiments. But this method has been applied in limited areas especially for mechanical problems. In this study, we experimented whether the structured sampling is useful for applying optimal design of mechanical elements. For the experiment, we first set up a mechanical problem which was related to determining optimal parameters associated a pin's crack occurred inside a hole. We, then, calculated combination of...

  • PDF

핵연료 시험용 노내조사시험설비의 설계 현황 (The Design Status of the Irradiation Facility for Fuel Test)

  • 박국남;심봉식;안성호;유성연
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.310-315
    • /
    • 2007
  • The FTL has been developed to be able to irradiate test fuels at the irradiation hole(IR1 hole) by considering its utility and user's irradiation requirements. FTL consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). Test condition in IPS such as pressure, temperature and the water quality, can be controlled by OPS. For safety assurance IPS is designed to have dual stainless steel pressure vessel and OPS is composed of main cooling water system, emergency cooling water system, LMP(letdown, make-up, purification) system, etc. FTL Conceptual design was set up in 2001, basic design had completed including a design requirement, basic piping & instrument diagram (P&ID), and the detail design in 2004. In 2005, the development team carried out purchase and manufacture hardware and make a contract for construction work. FTL construction work began on August, 2006 and ended on March, 2007. After FTL development which is expected to be finished by 2008, FTL will be used for the irradiation test of the new PWR-type fuel and can maximize the usage of HANARO.

  • PDF