• Title/Summary/Keyword: Hole Deformation

Search Result 174, Processing Time 0.031 seconds

A Basic Study of Crashworthiness Optimization Using Homogenization Method(II) (균질화법을 이용한 충돌 최적화 기초 연구(II))

  • 조용범;신효철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.181-191
    • /
    • 2002
  • The homogenization method is applied to maximize crash energy absorption for a given volume. Optimization analysis off closed-hat type example problem is conducted with different impact velocities and thicknesses. The results show that the bending-type deformation for the original design is changed to the folding-type deformation for a new design with a hole, which is partly due to the increase of the crash energy absorption for the new design. Dynamic mean crushing loads of the original and new design are compared with those by the theoretical equation by Wierzbicki. It shows that the dynamic mean crushing loads of new designs are very close to those by Wierzbicki's equation.

Stability evaluation of foundation settlement of power transmission tower (송전철탑의 기초침하에 대한 안정성 평가)

  • Lee, Dae-Soo;Cho, Hwa-Kyung;Kim, Dae-Hong;Ham, Bang-Uk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.687-696
    • /
    • 2005
  • Safety diagnosis was conducted to evaluate the long-term stability evaluation of power transmission tower of which deformation of the upper structural elements occurred. To assess the cause of the structural deformation, field investigation including BIPS, down-hole test, concrete pile coring and finite element analysis were carried out. From these studies, the major cause of deformation was found due to the heavily fractured layer and weathered soil topography at the pile tip area. The cement-milk grouting method was proposed to reinforce these weak zone around the pile tip area. Also, the increase of cross-section and stiffness for steel members of upper tower structures was suggested. Instrumental monitoring was proposed as well to verify reinforcing effect.

  • PDF

Influence of Chucking Forces upon the Accuracy of Circular Hole in Boring Process on the Turning (선반으로 보링가공 할 때 척킹력이 가공 정도에 미치는 영향)

  • Lee, Sang-Soo;Kang, Shin-Gil;Jeon, Young-Seog
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • The cutting process of materials is accompanied with the elastic and plastic deformation due to chucking forces in the boring process of thin holes on the turning. Upon removal of chucking forces at the end of process, the original shape is remained in the plastic deformation; on the other hand, it is modified in the elastic deformation due to spring back. Fixing materials by chucks on the turning has influence on roundness because the process is conducted with unbalanced distribution load induced from the fixing of three jaws. Moreover, the amount of spring back depends on the magnitude of fixing forces. We studied the change of roundness according to fixing forces as well as the method to reduce the influence of chucking forces.

A Pilot Study of Stiffness Mesurements for Tunnel-Face Materials Using In-hole Seismic Method (인홀 시험을 이용한 터널 막장의 암반강성 측정에 대한 적용성 연구)

  • Mok, Young-Jin;Kim, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.445-456
    • /
    • 2005
  • The research concentrates on improving the in-hole seismic probe, which has been developed in past five years, to be used in stiffness measurements of tunnel-face materials. The probe was down-sized to be fit in 45-mm diameter holes(or BX) drilled by a jumbo-drill, which is used to drill holes to install explosives for tunneling. Also trigger system was improved by using a down-speeding motor for operating convenience and air packing system was replaced with a set of plate-springs to eliminate supply of compressed air. These modifications are to adjust the probe for the unfavourable environment inside of tunnels and to test without any further drilling cost. The probe and testing procedure were successfully adopted with horizontal holes drilled by a jumbo-drill at a tunnel-face to evaluate the stiffness of rock mass. The measured shear wave velocities can be used to estimate deformation properties of rock mass for tunnel analyses.

  • PDF

Structural Behavior of Holed RC Beam mixed with Sawdust (폐톱밥 혼입 RC 유공보의 구조거동에 관한 실험적 연구)

  • Son, Ki-Sang;Lee, Jae-Hyeong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.96-104
    • /
    • 2006
  • This study is to find out how the sawdust-mixed RC beam with holes acts compared to two case of normal one with sawdust without hole, without sawdust. variables are ED3H1, ED3H2, ED3H1UB, ED3H2L, ED5H1, ED5H1UB, ED5H2, ED5H2L, Normal with sawdust PLA without sawdust. All sand, aggregate, cement are in accordance with KS. mixing design is also in accordance with KS and done at D remicon company in order to decrease any error in mixing manually. ED3H1 showed 7tone of maximum load capacity having only minor tensile deformation around hole, compared to the center of the beam. ED5H2L showed almost same shape of tensile strain between hole area and center of two beam length, while having 9.5 tone load capacity, incase of two holes being in the longitudinal axis. But ED5H2 in case of two holes being in same forcing direction showed 8.4tone of load capacity while having minor tensile chape around hole and normal tensile shape in the center of beam length. Two diameter 3cm hole in longitudinal axis give more effective behavior than the other case, practically. Capacity decrease between 5cm and 3cm in eccentric position form the longitudinal axis is less than percents. There is minor capacity difference between hole diameter 3cm hole, but 13tone difference of load capacity between hole diameter 5cm.

Warpage and Stress Simulation of Bonding Process-Induced Deformation for 3D Package Using TSV Technology (TSV 를 이용한 3 차원 적층 패키지의 본딩 공정에 의한 휨 현상 및 응력 해석)

  • Lee, Haeng-Soo;Kim, Kyoung-Ho;Choa, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.563-571
    • /
    • 2012
  • In 3D integration package using TSV technology, bonding is the core technology for stacking and interconnecting the chips or wafers. During bonding process, however, warpage and high stress are introduced, and will lead to the misalignment problem between two chips being bonded and failure of the chips. In this paper, a finite element approach is used to predict the warpages and stresses during the bonding process. In particular, in-plane deformation which directly affects the bonding misalignment is closely analyzed. Three types of bonding technology, which are Sn-Ag solder bonding, Cu-Cu direct bonding and SiO2 direct bonding, are compared. Numerical analysis indicates that warpage and stress are accumulated and become larger for each bonding step. In-plane deformation is much larger than out-of-plane deformation during bonding process. Cu-Cu bonding shows the largest warpage, while SiO2 direct bonding shows the smallest warpage. For stress, Sn-Ag solder bonding shows the largest stress, while Cu-Cu bonding shows the smallest. The stress is mainly concentrated at the interface between the via hole and silicon chip or via hole and bonding area. Misalignment induced during Cu-Cu and Sn-Ag solder bonding is equal to or larger than the size of via diameter, therefore should be reduced by lowering bonding temperature and proper selection of package materials.

Study of the Plating Methods in the Experimental Model of Mandibular Subcondyle Fracture (하악골 과두하부 골절 실험모델에서 견고정을 위한 플레이트 고정방법 연구)

  • Lee, Won;Kang, Dong Hee
    • Archives of Craniofacial Surgery
    • /
    • v.12 no.1
    • /
    • pp.12-16
    • /
    • 2011
  • Purpose: This study examined the biomechanical stability of four different plating techniques in the experimental model of mandibular subcondyle fracture. Methods: Twenty standardized bovine tibia bone samples ($7{\times}1.5{\times}1.0cm$) were used for this study. Each of the four sets of tibia bone was cut to mimic a perpendicular subcondyle fracture in the center area. The osteotomized tibia bone was fixed using one of four different fixation groups (A,B,C,D). The fixation systems included single 2.0 mm 4 hole mini adaption plate (A), single 2.0 mm 4 hole dynamic compression miniplate (B), double fixation with 2.0 mm 4 hole mini adaption plate (C), double fixation with a 2.0 mm 4 hole mini adaption plate and 2.0 mm 4 hole dynamic compression miniplate (D). A bending force was applied to the experimental model using a pressure machine (858 table top system, $MTS^{(R)}$) until failure occurred. The load for permanent deformation, maximum load of failure were measured in the load displacement curve with the chart recorder. Results: Double fixation with a 2.0 mm 4 hole mini adaption plate and a 2.0 mm 4 hole dynamic compression miniplate (D) applied to the anterior and posterior regions of the subcondyle experimental model showed the highest load to failure. Conclusion: From this study, double fixation with an adaption plate and dynamic compression miniplate fixation technique produced the greatest biomechanical stability. This technique may be considered a useful means of fixation to reduce the postoperative internal maxillary fixation period and achieve early mobility of the jaw.

A Study on performance analysis of screw rotor profiles (스크류 로터 치형의 성능해석에 관한 연구)

  • Choi, Sang-Hoon;Kim, Dong-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 1996
  • To design high-effective profile in screw rotor profile using in screw compressor, we design the symmetric type changing the number of lobes and the non-symmetric type changing the neighbourhood of the top point of lobe. Then, we calculated the performance value of profile according to the scale of these non-symmetric's wrap angle. We had the results as follows. 1. About the non-symmetric case, the larger a wrap angle is the shorter seal line is and the smaller blow hole is, thus we know what the large wrap angle profile is better than the small one. 2. We know what the non-symmetric profile is better than the symmetric profile in the result of the compare of seal line's length, blow hole's area, volume curve. 3. About the non-symmetric case, the deformation of the neighbourhood of lobe's top point of the rotor profile has a large effect upon the increase of performance because the length of seal line became short and the area of blow hole is small.

  • PDF

Experimental Evalutation of the Seismic Performance of WUF-W Moment Connections with a Modified Access Hole (개선된 엑세스 홀 형상을 갖는 WUF-W접합부의 실험을 통한 내진성능평가)

  • Han, Sang Whan;Jung, Jin;Moon, Ki-Hoon;Kim, Jin Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.21-28
    • /
    • 2012
  • Welded Unreinforced Flange-Welded Web (WUF-W) connection is one of Special Moment Frame (SMF) specified in ANSI/AISC-358. From the experimental test of WUF-W connection specimens conducted by the previous study, fracture occurred in the beam flange before achieving total inter-story drift angle of 0.04radian required for Special Moment Frames (SMF) system even though the specimens satisfied the design and detailing requirement specified in ANSI/AISC-358. These results are estimated as problem of the access hole geometry. In this study, a full-scale WUF-W connection specimen was made with a modified access hole geometry, and tested with the same test setting and loading as the previous test. From test results, the deformation capacity of the tested WUF-W connection specimen exceeded 4%, which is required for connections in SMF system. Comparing with the WUF-W specimens of the previous study, the strain demand of the beam flange in the tested specimen was decreased and energy dissipation capacity of the specimen was improved.

Effects of Bainitic Transformation Temperature and Stress State on the Formability of C-Mn-Si TRIP Steels (C-Mn-Si계 변태유기소성강의 성형성에 미치는 베이나이트 변태온도 및 응력상태의 영향)

  • Jun H. S.;Oh J. H.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.156-160
    • /
    • 2001
  • The effects of TRansformation Induced Plasticity(TRIP) phenomena on the plastic deformation of 0.2C-1.5Si-1.5Mn multiphase steels have been investigated at various heat treatment and stress conditions. In order to estimate the formability, the hole expansion(HE) tests and the tensile tests were carried out. The formability evaluated from the uni-axial tensile tests was quite different from the formability measured from multi-axial HE-tests. Consequently, the formability in the multi-axial stress state decreased due to the extinction of the retained austenite relatively at earlier deformation stage and the production of irregular α' martensite. However, the defects of TRIP-steels were initiated exactly at the boundary between transformed martensite and ferrite matrix regardless of stress state. In addition, new experimental formula is proposed in order to predict the multi-axial formability of the TRIP steels from the results of uniaxial tensile test.

  • PDF