• Title/Summary/Keyword: Holding time

Search Result 1,050, Processing Time 0.047 seconds

Friction Stir Spot Welding of AA5052 Aluminum Alloy and C11000 Copper Lap Joint

  • Prasomthong, Suriya;Sangsiri, Pradit;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.145-152
    • /
    • 2015
  • The article aims to apply a friction stir spot welding for producing the lap joint between AA5052 aluminum alloy and C11000 copper alloy. The dimension of the materials was 100 mm in length, 30 mm in width and 1.0 mm in thickness. The copper plate was set overlap the aluminum plate by 30 mm. The welding parameter was the rotating speed of 2500-4000 rpm, the pin inserting rate of 2-8 mm/min and the holding time of 6 sec. The mechanical properties test and the microstructure investigation were performed to evaluate the lap joint quality. The summarized results are as follows. The friction stir spot welding could produce effectively the lap joint between AA5052 and C11000 copper. Increase of the rotating speed and holding time directly affected to decrease the tensile shear strength of the lap joint. The optimized welding parameters in this study that indicated the tensile shear strength of 864 N was the rotating speed of 3500 rpm, the pin inserting rate of 6 mm/min and the holding time of 4sec. The experimental results also showed that the hardness of the weld metal was lower than that of the base materials.

Flow Holding Time based Link State Update Algorithm (플로우 유지 시간을 기반으로 한 링크 상태 갱신 알고리즘)

  • Cho, Kang-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.133-139
    • /
    • 2009
  • This paper has proposed Flow Holding Time based Link State Update(LSU) Algorithm that has minimized the LSU message overhead in QoS routing and has not had a strong influence on the depreciation of QoS routing performance. We apply a flow holding time in order to decrease the number of LSU message. We have evaluated the performance of the proposed model and the existing algorithms on MCI simulation network using the performance metric as the QoS routing blocking rate and the mean update rate per link, it thus appears that we have verified the performance of this algorithm.

An Integrated Production and Inventory Model in a Single-Vendor Multi-Buyer Supply Chain (단일 공급자 다수 구매자 공급체인에서 통합 생산 및 재고 모형)

  • Chang, Suk Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.117-126
    • /
    • 2015
  • This paper is to analyze an integrated production and inventory model in a single-vendor multi-buyer supply chain. The vendor is defined as the manufacturer and the buyers as the retailers. The product that the manufacturer produces is supplied to the retailers with constant periodic time interval. The production rate of the manufacturer is constant for the time. The demand of the retailers is constant for the time. The cycle time of the vendor is defined as the elapsed time from the start of the production to the start of the next production, while the cycle times of the buyer as the elapsed time between the adjacent supply times from the vendor to the buyer. The cycle times of the vendor and the buyers that minimizes the total cost in a supply chain are analyzed. The cost factors are the production setup cost and the inventory holding cost of the manufacturer, the ordering cost and the inventory holding cost of the retailers. The cycle time of the vendor is investigated through the cycle time that satisfies economic production quantity with the production setup cost and the inventory holding cost of the manufacturer. An integrated production and inventory model is formulated, and an algorithm is developed. An numerical example is presented to explain the algorithm. The solution of the algorithm for the numerical examples is compared with that of genetic algorithm. Numerical example shows that the vendor and the buyers can save cost by integrated decision making.

Analysis on the Car Ownership Structure Considering Household Car Ownership Pattern (가구별 차량보유패턴을 고려한 차량 보유구조 분석)

  • Lee, Jeong Hun;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.667-675
    • /
    • 2016
  • The goal of this study is to be used as baseline data for transportation demand management. At the present time the number of registered car and householding car is increasing, so there is a need to analyze the car ownership pattern through household car hold status. Also, it is necessary to analyze the factor of increasing car. The research is proceeded with classifying as the household which is holding private cars or holding passenger cars and non passenger cars based on the result of the research of the household travel survey data. The result of this study is shown as follows. According to car ownership pattern, there are more households holding passenger cars only when they are holding less than 2 cars. Otherwise there are more households holding passenger car and non passenger car when they are holding more than 3 cars. Using the Ordered Logit Model, there are more differences in factors affects holding cars by variables of housing type and household properties.

Parameters to Affect the Cirtical Characteristics of YBaCuO Bulk Prepared by MPMG (MPMG법을 이용한 YBaCuO 초전도체의 임계특성에 영향을 미치는 파라미터)

  • Gang, Hyeong-Gon;Im, Seong-Hun;Park, Seong-Jin;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.221-225
    • /
    • 1999
  • This paper shows the parameters to affect the critical characteristic of YBaCuO superconducting bulk fabricated by MPMG (Melt Powdered Melt Growth)process. In order to investigate proper processing variables, the effect of the holding time at the melting temperature and that of the slow cooling time in $O_2\; ambient\; on\; the\; J_c$ were experimented. And then with the above obtained heat treatment conditions, the effects of addition of $Y_2BaCuO_5\; and\; Ag\; on\; the\; J_c$ were also investigated. A proper slow cooling time yields phase transformation from Tetragonal $(YBa_2Cu_3O_6)$ to Orthorhombic $(YBa_2Cu_3O_7)$ during an annealing time in $O_2$. Ag addition plays a role in increasing the $T_c\; and\; the J_c$, but the magnetization decreases. The $J_c$ and the magnetization increase with addition of Y211. $J_c$ of the sample added Ag 10wt% is superiorover 3000 G. Proper holding time, slow cooling time and amount of impurity addition are important parameters in fabricating the YBaCuO bulk by MPMG process with high $J_c$.

  • PDF

Effect of Bonding Condition on the Tensile Properties of Diffusion Bonded Haynes230 (고상확산접합된 Haynes230의 인장성질에 미치는 접합조건의 영향)

  • Kang, Gil-Mo;Jeon, Ae-Jeong;Kim, Hong-Kyu;Hong, Sung-Suk;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.76-83
    • /
    • 2013
  • This study investigated the effect of bonding temperature and holding time on microstructures and mechanical properties of diffusion bonded joint of Haynes230. The diffusion bonds were performed at the temperature of 950, 1050, and $1150^{\circ}C$ for holding times of 30, 60, 120 and 240 minutes at a pressure of 4MPa under high vacuum condition. The amount of non-bonded area and void observed in the bonded interface decreased with increasing bonding temperature and holding time. Cr-rich precipitates at the linear interface region restrained grain migration at $950^{\circ}C$ and $1050^{\circ}C$. However, the grain migration was observed in spite of short holding time due to the dissolution of precipitates to base metal in the interface region at $1150^{\circ}C$. Three types of the fracture surface were observed after tensile test. The region where the coalesce and migration of grain occurred much showed high fracture load because of base metal fracture whereas the region where those did less due to the precipitates demonstrated low fracture load because of interface fracture. The expected fracture load could be derived with the value of fracture area of base metal ($A_{BF}$) and interface ($A_{IF}$), $Load=201A_{BF}+153A_{IF}$. Based on this equation, strength of base metal and interface fracture were calculated as 201MPa and 153MPa, respectively.

Effect of Isothermal Heat Treatment on the Microstructure and Mechanical Properties of Medium-Carbon Bainitic Steels (등온 열처리에 따른 중탄소 베이나이트강의 미세조직과 기계적 특성)

  • Lee, Ji-Min;Lee, Sang-In;Lim, Hyeon-Seok;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.522-527
    • /
    • 2018
  • This study investigates the effects of isothermal holding temperature and time on the microstructure, hardness and Charpy impact properties of medium-carbon bainitic steel specimens. Medium-carbon steel specimens with different bainitic microstructures are fabricated by varying the isothermal conditions and their microstructures are characterized using OM, SEM and EBSD analysis. Hardness and Charpy impact tests are also performed to examine the correlation of microstructure and mechanical properties. The microstructural analysis results reveal that granular bainite, bainitic ferrite, lath martensite and retained austenite form differently in the specimens. The volume fraction of granular bainite and bainitic ferrite increases as the isothermal holding temperature increases, which decreases the hardness of specimens isothermally heat-treated at $300^{\circ}C$ or higher. The specimens isothermally heat-treated at $250^{\circ}C$ exhibit the highest hardness due to the formation of lath martensite, irrespective of isothermal holding time. The Charpy impact test results indicate that increasing isothermal holding time improves the impact toughness because of the increase in volume fraction of granular bainite and bainitic ferrite, which have a relatively soft microstructure compared to lath martensite for specimens isothermally heat-treated at $250^{\circ}C$ and $300^{\circ}C$.

Autofrettage of Fuel Injection Pipe for Diesel Engine (디젤엔진 연료분사관의 자긴가공)

  • Koh, S.K.;Song, W.J.;Seo, K.S.;Choi, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.90-95
    • /
    • 2007
  • In order to investigate the optimum condition of the autofrettage process for the diesel engine injection pipe, different values of autofrettage pressure, pressure rising time, pressure holding time, and repetition of autofrettage process were applied. Autofrettage was preformed by applying the hydrostatic internal pressures of 603 MPa, 535 MPa, 500 MPa on the fuel injection pipe, corresponding to theoretically 50%, 30%, and 20% overstrain levels, respectively. The autofrettage residual stresses in the injection pipe were experimentally determined by using X-ray diffractometer. As the overstrain level increased, the magnitude of compressive residual stress at the bore increased. It was found that the rising time to reach the autofrettage pressure, holding time at the autofrettage pressure, and repeating application of the autofrettage pressure on the pipe had no significant influence on the residual stress distributions.

  • PDF

A study on Linear Pattern Fabrication of Plate-type Polymer by Using Thermal Nano Imprint Lithography Process (열간나노임프린트공정을 이용한 평판형 폴리머 소재의 선형 패턴 제작에 관한 연구)

  • Joung, Y.N.;Lee, C.S.;Youn, S.W.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.616-624
    • /
    • 2009
  • In this work we demonstrate the hot-embossing process under different forming conditions such as forming temperature, load, and holding time in pressing, in order to determine the suitable conditions required for linear patterning on polymer plates (PC). Results showed that the replicated pattern depth increased in proportion to an increase in the forming temperature, load, and time. The reduction of the workpiece thickness increased according to the holding time in the pressing process. In the process of time, the reduction ratio of the workpiece thickness decreased due to the surface area increment of the workpiece, while the pressure on the workpiece declined. In order to reduce the bulging ratio we introduced a temperature difference between the upper and the lower punch.

Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy (Cu-7Al-2.5Si 합금의 기계적 및 내식특성에 미치는 열처리 효과)

  • Lee, Syung-Yul;Won, Jong-Pil;Park, Dong-Hyun;Moon, Kyung-Man;Lee, Myeong-Hoon;Jeong, Jin-A;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.28-35
    • /
    • 2014
  • Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of $500^{\circ}C$ was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The ${\alpha}$, ${\beta}^{\prime}$ and ${\gamma}_2$ phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, ${\beta}^{\prime}$ and ${\gamma}_2$ phases decreased gradually with increasing the holding time at a constant temperature of $500^{\circ}C$. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that ${\gamma}_2$ phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the ${\gamma}_2$ phase with heat treatment. Consequently, it is suggested that the corrosion resistance of Cu-7Al-2.5Si alloy can be improved with the heat treatment as a holding time for 48 hrs at $500^{\circ}C$.