• Title/Summary/Keyword: Historical Sensor Data

Search Result 26, Processing Time 0.031 seconds

Fuel Consumption Prediction and Life Cycle History Management System Using Historical Data of Agricultural Machinery

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.5
    • /
    • pp.27-37
    • /
    • 2022
  • This study intends to link agricultural machine history data with related organizations or collect them through IoT sensors, receive input from agricultural machine users and managers, and analyze them through AI algorithms. Through this, the goal is to track and manage the history data throughout all stages of production, purchase, operation, and disposal of agricultural machinery. First, LSTM (Long Short-Term Memory) is used to estimate oil consumption and recommend maintenance from historical data of agricultural machines such as tractors and combines, and C-LSTM (Convolution Long Short-Term Memory) is used to diagnose and determine failures. Memory) to build a deep learning algorithm. Second, in order to collect historical data of agricultural machinery, IoT sensors including GPS module, gyro sensor, acceleration sensor, and temperature and humidity sensor are attached to agricultural machinery to automatically collect data. Third, event-type data such as agricultural machine production, purchase, and disposal are automatically collected from related organizations to design an interface that can integrate the entire life cycle history data and collect data through this.

Historical Sensor Data Management Using Temporal Information (센서 데이터의 시간 정보를 이용한 이력 정보 관리)

  • Lee, Yang-Koo;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.97-102
    • /
    • 2008
  • A wireless sensor network consists of many sensors that collect and transmit physical or environmental conditions at different locations to a server continuously. Many researches mainly focus on processing continuous queries on real-time data stream. However, they do not concern the problem of storing the historical data, which is mandatory to the historical queries. In this paper, we propose two time-based storage methods to store the sensor data stream and reduce the managed tuples without any loss of information, which lead to the improvement of the accuracy of query results.

  • PDF

Spatio-Temporal Query Processing Over Sensor Networks: Challenges, State Of The Art And Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz;Tanveer, Sadaf;Iqbal, Majid
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1756-1776
    • /
    • 2012
  • Wireless sensor networks (WSNs) are likely to be more prevalent as their cost-effectiveness improves. The spectrum of applications for WSNs spans multiple domains. In environmental sciences, in particular, they are on the way to become an essential technology for monitoring the natural environment and the dynamic behavior of transient physical phenomena over space. Existing sensor network query processors (SNQPs) have also demonstrated that in-network processing is an effective and efficient means of interaction with WSNs for performing queries over live data. Inspired by these findings, this paper investigates the question as to whether spatio-temporal and historical analysis can be carried over WSNs using distributed query-processing techniques. The emphasis of this work is on the spatial, temporal and historical aspects of sensed data, which are not adequately addressed in existing SNQPs. This paper surveys the novel approaches of storing the data and execution of spatio-temporal and historical queries. We introduce the challenges and opportunities of research in the field of in-network storage and in-network spatio-temporal query processing as well as illustrate the current status of research in this field. We also present new areas where the spatio-temporal and historical query processing can be of significant importance.

Design of Sensor Middleware Architecture on Multi Level Spatial DBMS with Snapshot (스냅샷을 가지는 다중 레벨 공간 DBMS를 기반으로 하는 센서 미들웨어 구조 설계)

  • Oh, Eun-Seog;Kim, Ho-Seok;Kim, Jae-Hong;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.1 s.16
    • /
    • pp.1-16
    • /
    • 2006
  • Recently, human based computing environment for supporting users to concentrate only user task without sensing other changes from users is being progressively researched and developed. But middleware deletes steream data processed for reducing process load of massive information from RFID sensor in this computing. So, this kind of middleware have problems when user demands probability or statistics needed for data warehousing or data mining and when user demands very important stream data repeatedly but already discarded in the middleware every former time. In this paper, we designs Sensor Middleware Architecture on Multi Level Spatial DBMS with Snapshot and manage repeatedly required stream datas to solve reusing problems of historical stream data in current middleware. This system uses disk databse that manages historical stream datas filtered in middleware for requiring services using historical stream information as data mining or data warehousing from user, and uses memory database that mamages highly reuseable data as a snapshot when stream data storaged in disk database has high reuse frequency from user. For the more, this system processes memory database management policy in a cycle to maintain high reusement and rapid service for users. Our paper system solves problems of repeated requirement of stream datas, or a policy decision service using historical stream data of current middleware. Also offers variant and rapid data services maintaining high data reusement of main memory snapshot datas.

  • PDF

SENSOR DATA MINING TECHNIQUES AND MIDDLEWARE STRUCTURE FOR USN ENVIRONMENT

  • Jin, Cheng-Hao;Lee, Yong-Mi;Kim, Hi-Seok;Pok, Gou-Chol;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.353-356
    • /
    • 2007
  • With advances in sensor technology, current researches on the pertinent techniques are actively directed toward the way which enables the USN computing service. For many applications using sensor networks, the incoming data are by nature characterized as high-speed, continuous, real-time and infinite. Due to such uniqueness of sensor data characteristics, for some instances a finite-sized buffer may not accommodate the entire incoming data, which leads to inevitable loss of data, and requirement for fast processing makes it impossible to conduct a thorough investigation of data. In addition to the potential problem of loss of data, incoming data in its raw form may exhibit high degree of complexity which evades simple query or alerting services for capturing and extracting useful information. Furthermore, as traditional mining techniques are developed to handle fixed, static historical data, they are not useful and directly applicable for analyzing the sensor data. In this paper, (1) describe how three mining techniques (sensor data outlier analysis, sensor pattern analysis, and sensor data prediction analysis) are appropriate for the USN middleware structure, with their application to the stream data in ocean environment. (2) Another proposal is a middleware structure based on USN environment adaptive to above mining techniques. This middleware structure includes sensor nodes, sensor network common interface, sensor data processor, sensor query processor, database, sensor data mining engine, user interface and so on.

  • PDF

Design of Digital Controllers with Self-Validating Intelligent Sensors (Self-Validating 지능형 센서를 사용한 디지털 제어기의 설계)

  • 나승유;배희종
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.51-54
    • /
    • 2000
  • We are concerned with processing methods of the measurement values of sensors in the control system. When some faults happen to sensor components, the measurement value of sensors cause the malfunction of the plant. So it is necessary to detect and reduce the influence of faults to control with reliability for the overall system. The sensor status must be always good for best demonstration of the controller performance. A self-validating sensor detects the sensor state from the measurement value, reconstruct a soft sensor and can improve reliability of the sensor. If sensor faults, the sensor is detected and reconstructed with the best estimate from its correlation to other sensors and historical data. It is applied to the control of a flexible link system with the sensor fault problems in the light sensor module for position to show the applicability. In this paper, we propose a digital controller which reduces deflection of the moving set-point by reconstructing output of a sensor when the sensor fault is detected.

  • PDF

A study on WSN based ECG and body temperature measuring system for ubiquitous healthcare: 1. the construction of sensor network platform (유비쿼터스 헬스케어를 위한 센서 네트워크 기반의 심전도 및 체온 측정 시스템: 1. 센서 네트워크 플랫폼 구축)

  • Lee, Young-Dong;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.362-370
    • /
    • 2006
  • The wireless sensor network (WSN) based ECG and body temperature measuring system for ubiquitous health-care were designed and developed. The system was composed of a wireless sensor network node, base station and server computer for the continuous monitoring of ECG signals and body temperatures of patients at home or hospital. ECG signal and body temperature data, important vital signals which are commonly used in clinical and trauma care, were displayed on a graphical user interface (GUI). The data transfer from sensor nodes on patients' body to server computer was accomplished through a base-station connected to a server computer using Zigbee compatible IEEE802.15.4 standard wireless communication. Real-time as well as historical, ECG data of elderly persons or patients, can also be retrieved and played back to assist the diagnosis. The ubiquitous health care system presented in this study can effectively reduce social medical expenses, which will be increased greatly in the coming aging society.

Development of On-Line Diagnostic Expert System Algorithmic Sensor Validation (진단 전문가시스템의 개발 : 연산적 센서검증)

  • 김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.323-338
    • /
    • 1994
  • This paper outlines a framework for performing intelligent sensor validation for a diagnostic expert system while reasoning under uncertainty. The emphasis is on the algorithmic preprocess technique. A companion paper focusses on heuristic post-processing. Sensor validation plays a vital role in the ability of the overall system to correctly detemine the state of a plant monitored by imperfect sensors. Especially, several theoretical developments were made in understanding uncertain sensory data in statistical aspect. Uncertain information in sensory values is represented through probability assignments on three discrete states, "high", "normal", and "low", and additional sensor confidence measures in Algorithmic Sv.Upper and lower warning limits are generated from the historical learning sets, which represents the borderlines for heat rate degradation generated in the Algorithmic SV initiates a historic data base for better reference in future use. All the information generated in the Algorithmic SV initiate a session to differentiate the sensor fault from the process fault and to make an inference on the system performance. This framework for a diagnostic expert system with sensor validation and reasonig under uncertainty applies in HEATXPRT$^{TM}$, a data-driven on-line expert system for diagnosing heat rate degradation problems in fossil power plants.

Fire Detection Method Using IoT and Wireless Sensor Network

  • Park, Jung Kyu;Roh, Young Hwa;Nam, Ki hun;Seo, Hyung Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.131-136
    • /
    • 2019
  • A wireless sensor network (WSN) consists of several sensor nodes and usually one base station. In this paper, we propose a method to monitor topics using a wireless sensor network. Fire threatens people, animals, and plants, and it takes a lot of recovery time when a fire occurs. For this reason, it is necessary to use a fire monitoring system that is easy to configure and fast to avoid fire. In this paper, we propose a fast and easily reliable fire detection system using WSN. The wireless node of the WSN measures the temperature and brightness around the node. The measured information is transferred to the workstation and to the base station. The workstation analyzes current and historical data records to monitor the fire and notify the manager.

Real Time Temperature Monitoring System Using Optic Fiber Sensor (광섬유 센서를 이용한 실시간 온도 감시 시스템)

  • Lee, Chang-Kun;Kim, Young-Su;Gu, Myeong-Mo;Kim, Bong-Gi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.209-216
    • /
    • 2010
  • Optical Temperature Distribution Sensor Measurement System uses fiber optic sensors itself for temperature measurement is a system which can be measured the Installed surrounding entire temperature as a thousand points by laying a single strand of fiber optic. If there are a lot of measuring points in the distribution Measurement, the cost of each measuring point can be reduced the cost level of existing sensors and at the same time this has the advantage of connecting all sensors as one or two strands of fiber. Generally Optical Fiber is used for communication but Optical Fiber itself can be used for sensor and it has the characteristic of sensor function which can be measured Temperature in the at least each one meter distance. By using these characteristics each sensor and the number of Connection Lines can be reduced. In this paper, we implement a real time temperature monitoring system, which is easy to manage and control for data storage, data management, data storage using a computer and which has the functions of monitoring and correction according to Real-time temperature changes using historical temperature data.