• 제목/요약/키워드: Histone deacetylase 1

검색결과 135건 처리시간 0.021초

Trichostatin A Induces Apoptotic Cell Death in Human Breast Carcinoma Cells through Activation of Caspase-3

  • Kim, Nsm-Deuk;Kim, Seaho;Choi, Yung-Hyun;Im, Eun-Ok;Lee, Ji-Hyeon;Kim, Dong-Kyoo
    • Journal of Life Science
    • /
    • 제10권2호
    • /
    • pp.39-44
    • /
    • 2000
  • Trichostatin A (TSA) is a Streptomyces product, which inhibits the enzyme activity of histone deacetylase. It is also known as an inducer of apoptosis in several human cancer cell lines. In this study, we investigated the mechanism of apoptosis induced by TSA in MDA-MB-231 human breast carcinoma cells. The cytotoxicity of TSA on MDA-MB-231 cells was assessed by MTT assay. The cell viability was decreased dose-dependently and the IC\ulcorner value was about 100 ng/ml after 48 h treatment with TSA. Morphological change and DNA ladder formation, the biochemical hallmarks of apoptotic cell death, were observed after treatment of TSA in a concentration-dependent manner, which was accompanied with cleavage of poly(ADP-ribose) polymerase and $\beta$-catenin, and activation of caspase-3. TSA treatment up-regulated the expression of a cyclin-dependent kinase inhibitor p21 (Wafl/Cip1) protein, a key regulatory protein of the cell cycle. However, there is no detectable change of both Bcl-2 and Bax expressions. These results demonstrated that TSA might inhibit cell growth through apoptosis in human breast carcinoma MDA-MB-231 cells.

  • PDF

Identification of druggable genes for multiple myeloma based on genomic information

  • Rahmat Dani Satria;Lalu Muhammad Irham;Wirawan Adikusuma;Anisa Nova Puspitaningrum;Arief Rahman Afief;Riat El Khair;Abdi Wira Septama
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.31.1-31.8
    • /
    • 2023
  • Multiple myeloma (MM) is a hematological malignancy. It is widely believed that genetic factors play a significant role in the development of MM, as investigated in numerous studies. However, the application of genomic information for clinical purposes, including diagnostic and prognostic biomarkers, remains largely confined to research. In this study, we utilized genetic information from the Genomic-Driven Clinical Implementation for Multiple Myeloma database, which is dedicated to clinical trial studies on MM. This genetic information was sourced from the genome-wide association studies catalog database. We prioritized genes with the potential to cause MM based on established annotations, as well as biological risk genes for MM, as potential drug target candidates. The DrugBank database was employed to identify drug candidates targeting these genes. Our research led to the discovery of 14 MM biological risk genes and the identification of 10 drugs that target three of these genes. Notably, only one of these 10 drugs, panobinostat, has been approved for use in MM. The two most promising genes, calcium signal-modulating cyclophilin ligand (CAMLG) and histone deacetylase 2 (HDAC2), were targeted by four drugs (cyclosporine, belinostat, vorinostat, and romidepsin), all of which have clinical evidence supporting their use in the treatment of MM. Interestingly, five of the 10 drugs have been approved for other indications than MM, but they may also be effective in treating MM. Therefore, this study aimed to clarify the genomic variants involved in the pathogenesis of MM and highlight the potential benefits of these genomic variants in drug discovery.

Inhibition of Class I Histone Deacetylase Enhances Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells

  • Yukyeong Lee;Seung-Won Lee;Dahee Jeong;Hye Jeong Lee;Na Young Choi;Jin Seok Bang;Seokbeom Ham;Kinarm, Ko
    • International Journal of Stem Cells
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2023
  • Background and Objectives: Spermatogonial stem cells (SSCs) are the most primitive cells in spermatogenesis and are the only adult stem cells capable of passing on the genome of a given species to the next generation. SSCs are the only adult stem cells known to exhibit high Oct4 expression and can be induced to self-reprogram into pluripotent cells depending on culture conditions. Epigenetic modulation is well known to be involved in the induction of pluripotency of somatic cells. However, epigenetic modulation in self-reprogramming of SSCs into pluripotent cells has not been studied. Methods and Results: In this study, we examined the involvement of epigenetic modulation by assessing whether selfreprogramming of SSCs is enhanced by treatment with epigenetic modulators. We found that second-generation selective class I HDAC inhibitors increased SSC reprogramming efficiency, whereas non-selective HDAC inhibitors had no effect. Conclusions: We showed that pluripotent stem cells derived from adult SSCs by treatment with small molecules with epigenetic modulator functions exhibit pluripotency in vitro and in vivo. Our results suggest that the mechanism of SSC reprogramming by epigenetic modulator can be used for important applications in epigenetic reprogramming research.

신경줄기세포(HB1.F3)에서 나트륨옥소 공동수송체 도입유전자 발현 (Expression of Sodium/iodide Symporter Transgene in Neural Stem Cells)

  • 김윤희;이동수;강주현;이용진;정준기;이명철
    • 대한핵의학회지
    • /
    • 제38권1호
    • /
    • pp.99-108
    • /
    • 2004
  • 목적: 생체 내로 이식한 신경 줄기 세포의 이동과 증식을 비침습적으로 추적하는 것은 기초와 임상에서 중요한 것으로 알려져 있다. 신경줄기 세포주(F3)를 생체내로 이식 후, 비침습적으로 추적하기 위해 사람의 hNIS 유전자를 F3 세포에 안정적으로 형질 도입하여 세포 배양 시간 및 조건에 따른 F3-NIS 세포 내에서 hNIS 유전자의 발현 변화를 알아보았다. 방법: HB1.F3는 태아 종뇌에서 신경 줄기 세포를 분리한 후 v-myc유전자로 불멸화한 신경줄기 세포주이다. CMV 프로모터 조절 받도록 hNIS와 하이그로마이신 저항 유전자를 IRES(internal ribosomal entry site)를 이용하여 재조합하였다(pIRES-NIS/Hyg). pIRES-NIS/Hyg를 리포좀을 이용하여 HB1.F3 세포를 형질전환 하였다. 탈메틸화시약(5-Azacytidine)와 히스톤탈아실화효소저해제(trichostatin; TSA)을 세포주에 24시간 처리한 후, hNIS 발현을 I-125 섭취율과 역전사효소 중합효소연쇄반응(RT-PCR)으고 측정하였다. 결과: pIRES-NIS/Hyg 재조합 유전자를 HB1.F3에 형질도입 후, 2주 동안 하이그로마이신 B를 처리해 hNIS 유전자를 안정적으로 발현하는 HB1.F3 세포를 얻었다(F3-NIS III). I-125 섭취율은 HB1.F3에 비해 F3-NIS가 12.9배 높았으며, $KClO_4$를 처리 했을 때 F3-NIS의 I-125 섭취가 완전히 저해되었다. F3-NIS를 계대 배양하면 hNIS 유전자의 발현이 1.9배 까지 서서히 감소하였다. 5-Azacytidine과 TSA를 F3-NIS에 24시간 처리한 결과, I-125 섭취율이 5-Azacytidine과 TSA 농도에 따라 증가되었다. 또한 같은 방법으로 F3-NIS 세포에 5-Azacytidine과 TSA를 처리한 후 hNIS 프라이머로 RT-PCR을 수행한 결과 hNIS mRNA가 농도에 따라 증가 되었다. 결론: hNIS 유전자 이입된 F3 세포는 계대 배양하는 동안 생물학적인 특성이 변화되는 것으로 관찰되었으며, 이는 줄기 세포에 이입된 외래 유전자의 발현이 DNA 탈메틸화나 히스혼아세틸화를 통한 에피지네틱 조율 때문이라고 생각한다.

Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression

  • Zhou, Da;Chen, Yuan-Wen;Zhao, Ze-Hua;Yang, Rui-Xu;Xin, Feng-Zhi;Liu, Xiao-Lin;Pan, Qin;Zhou, Huiping;Fan, Jian-Gao
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.2.1-2.12
    • /
    • 2018
  • Glucagon-like peptide-1 (GLP-1) has a broad spectrum of biological activity by regulating metabolic processes via both the direct activation of the class B family of G protein-coupled receptors and indirect nonreceptor-mediated pathways. GLP-1 receptor (GLP-1R) agonists have significant therapeutic effects on non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. However, clinical studies indicated that GLP-1 treatment had little effect on hepatic steatosis in some NAFLD patients, suggesting that GLP-1 resistance may occur in these patients. It is well-known that the gut metabolite sodium butyrate (NaB) could promote GLP-1 secretion from intestinal L cells. However, it is unclear whether NaB improves hepatic GLP-1 responsiveness in NAFLD. In the current study, we showed that the serum GLP-1 levels of NAFLD patients were similar to those of normal controls, but hepatic GLP-1R expression was significantly downregulated in NAFLD patients. Similarly, in the NAFLD mouse model, mice fed with a high-fat diet showed reduced hepatic GLP-1R expression, which was reversed by NaB treatment and accompanied by markedly alleviated liver steatosis. In addition, NaB treatment also upregulated the hepatic p-AMPK/p-ACC and insulin receptor/insulin receptor substrate-1 expression levels. Furthermore, NaB-enhanced GLP-1R expression in HepG2 cells by inhibiting histone deacetylase-2 independent of GPR43/GPR109a. These results indicate that NaB is able to prevent the progression of NAFL to NASH via promoting hepatic GLP-1R expression. NaB is a GLP-1 sensitizer and represents a potential therapeutic adjuvant to prevent NAFL progression to NASH.

UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer

  • Kim, Min Jun;Lee, Han Ju;Choi, Mee Young;Kang, Sang Soo;Kim, Yoon Sook;Shin, Jeong Kyu;Choi, Wan Sung
    • Molecules and Cells
    • /
    • 제44권3호
    • /
    • pp.146-159
    • /
    • 2021
  • DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.

비소세포성 폐암에서 인슐린 양 성장 인자 결합 단백질-3의 발현 조절 기전 (Regulatory Mechanism of Insulin-Like Growth Factor Binding Protein-3 in Non-Small Cell Lung Cancer)

  • 장윤수;이호영;김영삼;김형중;장준;안철민;김성규;김세규
    • Tuberculosis and Respiratory Diseases
    • /
    • 제56권5호
    • /
    • pp.465-484
    • /
    • 2004
  • 배 경 : 인슐린 양 성장 인자(IGF) 결합 단백질-3(IGFBP-3)은 IGF와 결합하여 IGF의 세포 분열 촉진 및 항세포 고사 기전을 억제할 뿐 아니라 IGF와는 독립적으로 세포고사를 유도함으로써 비소세포성 폐암 세포주의 성장을 억제한다. 방 법 : 본 연구에서 저자들은 IGFBP-3 promoter의 hyper-methylation이 IGFBP-3 단백 발현에 어떠한 역할을 하는가를 연구하였다. 또한 비소세포성 폐암 세포주에서 methylation된 IGFBP-3 promoter에서 유전자 발현을 억제하는 기전을 연구하였다. 결 과 : 본 연구에 사용된 15 종의 비소세포성 폐암 세포주 중 7종 (46.7%)에서 IGFBP-3 promoter의 methylation 이 관찰되었으며, 23명의 I기 환자 검체 중 16 (69.7%), 9명의 II기 환자 검체중 7 (77.8%), 5명의 IIIA 환자 검체중 4 (80%), 6명의 IIIB 환자 검체중 4 (66.7 %), 그리고 6 명의 IV기 환자검체중 6명 모두에서 (100%) promoter 의 methylation 이 관찰되었다. 이 비소세포성 폐암 세포주에서 promoter methylation 상태는 IGFBP-3 단백 및 mRNA 발현양상과 잘 일치하였으며, IGFBP-3의 발현이 억제되었던 비소세포성 폐암 세포주들 중 일부의 세포에서 demethylating 약제인 5'-aza-2'-deoxycytidine (5'-aza-dC) 처리 후 그 발현이 회복되었다. IGFBP-3 promoter 활성도에 중요한 역할을 하는 Sp-1/Sp-3 결합 요소는 IGFBP-3 단백 발현이 억제된 비소세포성 폐암 세포주에서 methylation되어 있었으며, 이 요소의 methylation 은 Sp-1 전사 인자의 결합을 억제하였다. ChIP assay 결과에서 IGFBP-3 promoter의 methylation 상태는 Sp-1/Sp-3 결합 요소에 Sp-1, methyl-CpG binding protein-2 (MeCP2), 그리고 histone deacetylase (HDAC)의 결합에 영향을 주며, 이는 5'-aza-dC 처리에 의하여 역전 되었다. Sp-1/Sp-3 결합 요소를 포함하고 있는 IGFBP-3 promoter의 in vitro methylation은 promoter activity를 현저히 감소시켰으며 이는 MeCP2 단백을 동시에 발현 시켰을 때 더욱 억제되며 5'-aza-dC 처리시 회복되었다. 결 론 : 이러한 결과들은 IGFBP-3 promoter의 methylation이 IGFBP-3 발현을 억제하는 하나의 기전이며, HDAC의 모집을 유도함으로서 MeCP2가 IGFBP-3 발현 억제에 중요한 역할을 함을 보이는 것이다. 이런 현상은 비소세포성 폐암에서 진단 당시의 진행된 병기와도 관계가 있어 IGFBP-3 promoter의 methylation 상태가 비소세포성 폐암의 발암 기전 및 진행에 중요한 역할을 하고 있음을 보이고 있으며, 나아가 조기 진단 및 암 예방영역에서 하나의 생물학적 지표로도 사용될 수 있을 것으로 생각된다.

생애 초기 유해 경험이 우울증의 발병과 p11 유전자의 후성유전기전에 미치는 영향 (Effects of Early Life Stress on the Development of Depression and Epigenetic Mechanisms of p11 Gene)

  • 서미경;최아정;이정구;엄상화;박성우;석대현
    • 생명과학회지
    • /
    • 제29권9호
    • /
    • pp.1002-1009
    • /
    • 2019
  • 생애 초기 유해 경험은 우울증의 위험성을 높이며, 성인기 스트레스의 민감성에 영향을 미칠 수 있다. 출생 후 모성 분리(MS)로 인한 성인기 스트레스(장기간 예측 불가능한 스트레스; CUS)의 취약성에 p11 유전자의 후성유전기전이 영향을 미치는 지를 확인하였다. 출생 직후부터 21일 동안 하루 3시간 동안 새끼 생쥐를 어미 생쥐로부터 분리시켜 새끼 생쥐가 성체가 되었을 때 CUS를 3주 동안 매일 적용하였다. Real time PCR기법으로 해마의 p11 발현 양을 측정하였고, 염색질 면역 침전 분석법으로 p11 promoter의 히스톤 H3 아세틸화 및 메틸화 양을 측정하였다. 강제수영검사에서 우울 유사 행동을 측정하였다. MS군 및 CUS군은 p11 mRNA 발현 양을 유의하게 감소시켰으며, MS+CUS군은 CUS군에 비해 p11 발현 양을 유의하게 증가시켰다. 또한 MS+CUS군은 CUS군에 비해 H3 아세틸화를 감소시켰다. 이러한 감소는 HDAC5 mRNA 발현 증가와 일치하였다. MS+CUS군은 CUS군에 비해 H3K4 메틸화를 감소시켰으며, H3K27 메틸화를 증가시켰다. 강제수영검사에서 p11 발현이 가장 많이 감소된 MS+CUS군이 대조군에 비해 더 긴 부동 시간을 나타내었다. 출생 후 모성 분리를 경험하고 성체 기간에 스트레스를 함께 받은 생쥐는 성체기간에만 스트레스를 받은 생쥐보다 훨씬 더 큰 후성유전 변화를 보여주었다. 생애 초기 유해 경험은 해마에서 p11 유전자의 히스톤 변형을 통해 성체 스트레스 효과를 더 악화시키는 것으로 생각된다.

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

Effect of Reboxetine Pretreatment on the Forced Swimming Test-induced Gene Expression Profile in the Rat Lateral Septum

  • Moon, Bo-Hyun;Kang, Seung-Woo;Kim, Hyun-Ju;Shin, Seung-Keon;Choi, Sang-Hyun;Lee, Min-Soo;Kim, Myeung-Kon;Shin, Kyung-Ho
    • Molecular & Cellular Toxicology
    • /
    • 제4권1호
    • /
    • pp.31-44
    • /
    • 2008
  • The forced swim test (FST) is the most widely used model for assessing potential antidepressant activity. Although it has been shown that lateral septum is involved with the FST-related behavior, it is not clear whether antidepressant treatments could alter the FST-induced gene expression profile in the lateral septum. In the present study, the gene expression profiles in response to FST and reboxetine pretreatment were observed in the lateral septum of rats. Reboxetine is known as a most selective serotonin norepinephrine reuptake inhibitor. In addition, we compared the changes in gene expression profile between reboxetine response and nonresponse groups, which were determined by counting FST-related behavior. After FST, lateral septum from controls and reboxetine pretreated group were dissected and gene expression profiles were assessed using an Affymetrix microarray system containing 15,923 genes. Various genes with different functions were changed in reboxetine response group compared with reboxetine nonresponse group, In particular, pleiotrophin, orexin receptor 2, serotonin 2A receptor, neuropeptide Y5 receptor and thyroid hormone receptor $\beta$ were decreased in reboxetine response group, but Lim motif-containing protein kinase 1 (Limk1) and histone deacetylase 1 (HDAC1) were increased. Although further studies are required for direct roles of these genes in reboxetine response, the microarray may provide tools to find out potential target genes and signaling pathways in antidepressant response.