Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.9.1002

Effects of Early Life Stress on the Development of Depression and Epigenetic Mechanisms of p11 Gene  

Seo, Mi Kyoung (Paik Institute for Clinical Research, Inje University)
Choi, Ah Jeong (Paik Institute for Clinical Research, Inje University)
Lee, Jung Goo (Paik Institute for Clinical Research, Inje University)
Urm, Sang-Hwa (Department of Preventive Medicine, College of Medicine, Inje University)
Park, Sung Woo (Paik Institute for Clinical Research, Inje University)
Seog, Dae-Hyun (Department of Biochemistry, College of Medicine, Inje University)
Publication Information
Journal of Life Science / v.29, no.9, 2019 , pp. 1002-1009 More about this Journal
Abstract
Early life stress (ELS) increases the risk of depression. ELS may be involved in the susceptibility to subsequent stress exposure during adulthood. We investigated whether epigenetic mechanisms of p11 promoter affect the vulnerability to chronic unpredictable stress (CUS) induced by the maternal separation (MS). Mice pups were separated from their dams (3 hr/day from P1-P21). When the pups reached adulthood, we applied CUS (daily for 3 weeks). The levels of hippocampal p11 expression were analyzed by quantitative real-time PCR. The levels of acetylated and methylated histone H3 at p11 promoter were measured by chromatin immunoprecipitation. Depression-like behavior was measured by the forced swimming test (FST). The MS and CUS group exhibited significant decreases in p11 mRNA level and the MS plus CUS group had a greater reduction in this level than the CUS group. The MS plus CUS group also resulted in greater reduction in H3 acetylation than the CUS group. This reduction was associated with an upregulation of histone deacetylase 5. Additionally, the MS plus CUS group showed a greater decrease in H3K4met3 level and a greater increase in H3K27 met3 level than the CUS group. Consistent with the reduction of p11 expression, the MS plus CUS group displayed longer immobility times in the FST compared to the control group. Mice exposed to MS followed by CUS had much greater epigenetic alterations in the hippocampus compared to adult mice that only experienced CUS. ELS can exacerbate the effect of stress exposure during adulthood through histone modification of p11 gene.
Keywords
Chronic unpredictable stress; depression; epigenetic mechanisms; maternal separation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Banasr, M., Valentine, G. W., Li, X. Y., Gourley, S. L., Taylor, J. R. and Duman, R. S. 2007. Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol. Psychiatry 62, 496-504.   DOI
2 Borrelli, E., Nestler, E. J., Allis, C. D. and Sassone-Corsi, P. 2008. Decoding the epigenetic language of neuronal plasticity. Neuron 60, 961-974.   DOI
3 Boulle, F., van den Hove, D. L., Jakob, S. B., Rutten, B. P., Hamon, M., van Os, J., Lesch, K. P., Lanfumey, L., Steinbusch, H. W. and Kenis, G. 2012. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol. Psychiatry 17, 584-596.   DOI
4 Erburu, M., Munoz-Cobo, I., Dominguez-Andres, J., Beltran, E., Suzuki, T., Mai, A., Valente, S., Puerta, E. and Tordera, R. M. 2015. Chronic stress and antidepressant induced changes in Hdac5 and Sirt2 affect synaptic plasticity. Eur. Neuropsychopharmacol. 25, 2036-2048.   DOI
5 Farrell, C. and O'Keane, V. 2016. Epigenetics and the glucocorticoid receptor: a review of the implications in depression. Psychiatry Res. 242, 349-356.   DOI
6 Heim, C. and Nemeroff, C. B. 2001. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry 49, 1023-1039.   DOI
7 Hobara, T., Uchida, S., Otsuki, K., Matsubara, T., Funato H., Matsuo, K., Suetsugi, M. and Watanabe, Y. 2010. Altered gene expression of histone deacetylases in mood disorder patients. J. Psychiatr. Res. 44, 263-270.   DOI
8 Izzo, A. and Schneider, R. 2010. Chatting histone modifications in mammals. Brief Funct. Genomics 9, 429-443.   DOI
9 Kendler, K. S., Sheth, K., Gardner, C. O. and Prescott, C. A. 2002. Childhood parental loss and risk for first-onset of major depression and alcohol dependence: the time-decay of risk and sex differences. Psychol. Med. 32, 1187-1194.   DOI
10 Li, H. Y., Jiang, Q. S., Fu, X. Y., Jiang, X. H., Zhou, Q. X. and Qiu, H. M. 2017. Abnormal modification of histone acetylation involved in depression-like behaviors of rats induced by chronically unpredicted stress. Neuroreport 28, 1054-1060.   DOI
11 McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C., Hallett, M., Meaney, M. J. and Szyf, M. 2011. Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 6, e14739.   DOI
12 Neyazi, A., Theilmann, W., Brandt, C., Rantamaki, T., Matsui, N., Rhein, M., Kornhuber, J., Bajbouj, M., Sperling, W., Bleich, S., Frieling, H. and Loscher, W. 2018. p11 promoter methylation predicts the antidepressant effect of electroconvulsive therapy. Transl. Psychiatry 8, 25.   DOI
13 Choi, J. K. and Howe, L. J. 2009. Histone acetylation: truth of consequences? Biochem. Cell Biol. 87, 139-150.   DOI
14 de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. and van Kuilenburg, A. B. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737-749.   DOI
15 Egeland, M., Warner-Schmidt, J., Greengard, P. and Svenningsson, P. 2010. Neurogenic effects of fluoxetine are attenuated in p11 (S100A10) knockout mice. Biol. Psychiatry 67, 1048-1056.   DOI
16 Melas, P. A., Rogdaki, M., Lennartsson, A., Bjork, K., Qi, H., Witasp, A., Werme, M., Wegener, G., Mathe, A. A., Svenningsson, P. and Lavebratt, C. 2012. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int. J. Neuropsychopharmacol. 15, 669-679.   DOI
17 Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmuhl, Y., Fischer, D., Holsboer, F., Wotjak, C. T., Almeida, O. F. and Spengler, D. 2009. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurocsi. 12, 1559-1566.   DOI
18 Porsolt, R. D., Le Pichon, M. and Jalfre, M. 1977. Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730-732.   DOI
19 Seo, M. K., Ly, N. N., Lee, C. H., Cho, H. Y., Choi, C. M., Nhu, L. H., Lee, J. G., Lee, B. J., Kim, G. M., Yoon, B. J., Park, S. W. and Kim, Y. H. 2016. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology 105, 388-397.   DOI
20 St-Cyr, S. and McGowan, P. O. 2015. Programming of stressrelated behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor. Front Behav. Neurosci. 9, 145.   DOI
21 Sun, H., Kennedy, P. J. and Nestler, E. J. 2013. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38, 124-137.   DOI
22 Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L. and Nestler, E. J. 2006. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519-525.   DOI
23 Svenningsson, P., Chergui, K., Rachleff, I., Flajolet, M., Zhang, X., El Yacoubi, M., Vaugeois, J. M., Nomikos, G. G. and Greengard, P. 2006. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311, 77-80.   DOI
24 Svenningsson, P., Kim, Y., Warner-Schmidt, J., Oh, Y. S. and Greengard, P. 2013. p11 and its role in depression and therapeutic responses to antidepressants. Nat. Rev. Neurosci. 14, 673-680.   DOI
25 Theilmann, W., Kleimann, A., Rhein, M., Bleich, S., Frieling, H., Loscher, W. and Brandt, C. 2016. Behavioral differences of male Wistar rats from different vendors in vulnerability and resilience to chronic mild stress are reflected in epigenetic regulation and expression of p11. Brain Res. 1642, 505-515.   DOI
26 Turecki, G. and Meaney, M. J. 2016. Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review. Biol. Psychiatry 79, 87-96.   DOI
27 Vogelauer, M., Wu, J., Suka, N. and Grunstein, M. 2000. Global histone acetylation and deacetylation in yeast. Nature 408, 495-498.   DOI
28 Warner-Schmidt, J. L., Chen, E. Y., Zhang, X., Marshall, J. J., Morozov, A., Svenningsson, P. and Greengard, P. 2010. A role for p11 in the antidepressant action of brain-derived neurotrophic factor. Biol. Psychiatry 68, 528-535.   DOI
29 Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M. and Meaney, M. J. 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847-854.   DOI
30 Warner-Schmidt, J. L., Flajolet, M., Maller, A., Chen, E. Y., Qi, H., Svenningsson, P. and Greengard, P. 2009. Role of p11 in cellular and behavioral effects of 5-HT4 receptor stimulation. J. Neurosci. 29, 1937-1946.   DOI
31 Weaver, I. C., D'Alessio, A. C., Brown, S. E., Hellstrom, I. C., Dymov, S., Sharma, S., Szyf, M. and Meaney, M. J. 2007. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J. Neurosci. 27, 1756-1768.   DOI
32 Willner, P. 2005. Chronic mild stress (CMS) revisited: consistency and behavioural- neurobiological concordance in the effects of CMS. Neuropsychobiology 52, 90-110.   DOI
33 Wu, R., Shui, L., Wang, S., Song, Z. and Tai, F. 2016. Bilobalide alleviates depression-like behavior and cognitive deficit induced by chronic unpredictable mild stress in mice. Behav. Pharmacol. 27, 596-605.   DOI