• 제목/요약/키워드: Histone deacetylase 1

검색결과 134건 처리시간 0.024초

The Fission Yeast Hda1p Functions on the Regulation of Proper Cell Division

  • Hwang, Hyung-Seo;Suh, Na-Young;Song, Ki-Won
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.263-267
    • /
    • 2000
  • We cloned $hda1^+$ (histone deacetylase 1) of fission yeast Schizosaccharomyces pombe. The hda1 of S. pombe was previously reported to encode for an active histone deacetylase (Rundlett et al., 1996; Olsson et al., 1998). The $hda1^+$ is phylogenetically related to the new open reading frame HOS2 of Saccharomyces cerevisiae and only shows a partial homology to the well-known histone deacetylase subclasses, RPD3 and HDA1. A single hda1 mRNA of 1.8 kb was detected at the same level in actively growing and nitrogen-starved cells. When highly over-expressed in S. pombe from an inducible promoter, $hda1^+$ inhibited cell proliferation and caused defects in morphology and cell division. The increased histone deacetylase activity was detected in hdar over-expressing cells. These results suggest that the Hda1p should function on the regulation of cell division possibly by (Allfrey, 1966) direct deacetylation of cytoskeletal (Wade et al., 1997) and cell division regulatory proteins, (Wolffe, 1997) or by controlling their gene expressions.

  • PDF

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon;Kim, Min-Jung;Kwon, Ho-Jeong
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.110-119
    • /
    • 2003
  • The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

Novel $\delta$-Lactam base Histone Deacetylase Inhibitors: Synthesis and Biological Evaluation I.

  • Park, Bum-Woo;Ryu, Dong-Kyu;Kim, Tae-Kyun;Park, Song-Kyu;Han, Jeong-Hwan;Han, Gyoon-Hee
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.184.1-184.1
    • /
    • 2003
  • HDAC and HAT (histone acetyltransferase) are involved in co-regulation in chromatin remodeling and the functional regulation of gene transcription. Abnormal recruitment of HDAC is related to carcinogenesis. Thus, the identification of potent histone deacetylase (HDAC) inhibitor has been considered as very intriguing approach for development for cancer chemotherapy. More recently, anti-inflammatory activity of SAHA cytokines was reported via reduction of proinflammatory cytokinres in vitro and in vivo. (omitted)

  • PDF

유전자재조합 CHO 세포에서 Histone Deacetylase Inhibitor를 이용한Albumin-erythropoietin 생산성 증진 (Enhanced Production of Albumin-erythropoietin by Histone Deacetylase Inhibitors in Recombinant CHO Cells)

  • 김수진;서준석;최성훈;차현명;임진혁;신수아;신연경;김동일
    • KSBB Journal
    • /
    • 제30권1호
    • /
    • pp.44-51
    • /
    • 2015
  • Chinese hamster ovary (CHO) cells are the most widely used mammalian host for the commercial production of recombinant proteins. However, they show relatively low yields of recombinant proteins in comparison with microbial cells. Various strategies have been tried to overcome this drawback. The acetyl moieties are attached to the N-terminus of histone by histone acetyltransferase (HAT) while histone deacetylase (HDAC) removes histone-bound acetyl groups. HDAC inhibitor (HDACi), such as sodium butyrate, sodium propionate and valproic acid, can enhance specific productivity of CHO cells. Human albumin-erythropoietin (Alb-EPO) is a novel 105 kDa protein comprising recombinant human EPO fused to human albumin. In this study, we examined the effects of HDACi on the production of Alb-EPO in CHO cells with various concentrations in the range of 0-1 mM. The results showed that sodium butyrate was found to be the best HDACi for enhancing productivity. It enhanced not only the production of Alb-EPO but also the apoptosis of recombinant CHO cells.

Histone Deacetylase Inhibitors Induce the Differentiation of Eosinophilic Leukemia EoL-1 Cells into Eosinophils

  • Ishihara Kenji;Hong Jang-Ja;Kaneko Motoko;Takahashi Aki;Sugeno Hiroki;Kang Young-Sook;Ohuchi Kazuo
    • Biomolecules & Therapeutics
    • /
    • 제14권2호
    • /
    • pp.67-74
    • /
    • 2006
  • EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells, and induced the expression of markers for mature eosinophils such as integrin ${\beta}7$, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of his tones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

Determination of a histone deacetylase inhibitor SD-2007 by LC/MS and application to a pharmacokinetic study in rats

  • Shin, Beom-Soo;Yoon, Chi-Ho;Park, Min-Young;Jun, Yoon-Sik
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.310.1-310.1
    • /
    • 2003
  • SD-2007 ia an apicidin analogue, possessing a potent histone deacetylase inhibiting activity. A rapid and senstive LC/MS method was developed for the determination of SD-2007 and its major active metabolite. apicidin. in rat serum. SD-2007 and apicidin was extracted by liquid-liquid extraction using methyl t-butyl ether. SD-2007 and apicidin were monitored in a SIM mode at m/z of 679 and 622, respectively. (omitted)

  • PDF

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Singh, Parul;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.57-63
    • /
    • 2013
  • Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.

New Yeast Cell-Based Assay System for Screening Histone Deacetylase 1 Complex Disruptor

  • Jeon, Kwon-Ho;Kim, Min-Jung;Kim, Seung-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권2호
    • /
    • pp.286-291
    • /
    • 2002
  • Histone deacetylase I (HDAC1) works as one of the components in a nucleosome remodeling (NuRD) complex that consists of several proteins, including metastasis-associated protein 1 (MTA1). Since the protein-protein interaction of HDAC1 and MTA1 would appear to be important for both the integrity and functionality of the HDAC1 complex, the interruption of the HDAC1 and MTA1 interaction may be an efficient way to regulate the biological function of the HDAC1 complex. Based on this idea, a yeast two-hybrid system was constructed with HDAC1 and MTA1 expressing vectors in the DNA binding and activation domains, respectively. To verify the efficiency of the assay system, 3,500 microbial metabolite libraries were tested using the paper disc method, and KB0699 was found to inhibit the HDAC1 and MTA1 interaction without any toxicity to the wild-type yeast. Furthermore, KB0699 blocked the interaction of HDAC1 and MTA1 in an in vitro GST pull down assay and induced morphological changes in B16/BL6 melanoma cells, indicating the interruption of the HDAC1 complex function. Accordingly, these results demonstrated that the yeast assay strain developed in this study could be a valuable tool for the isolation of a HDAC1 complex disruptor.

Histone Deacetylase 701 (HDT701) Induces Flowering in Rice by Modulating Expression of OsIDS1

  • Cho, Lae-Hyeon;Yoon, Jinmi;Wai, Antt Htet;An, Gynheung
    • Molecules and Cells
    • /
    • 제41권7호
    • /
    • pp.665-675
    • /
    • 2018
  • Rice is a facultative short-day (SD) plant in which flowering is induced under SD conditions or by other environmental factors and internal genetic programs. Overexpression of Histone Deacetylase 701 (HDT701) accelerates flowering in hybrid rice. In this study, mutants defective in HDT701 flowered late under both SD and long-day conditions. Expression levels of florigens Heading date 3a (Hd3a) and Rice Flowering Locus T1 (RFT1), and their immediate upstream floral activator Early heading date 1 (Ehd1), were significantly decreased in the hdt701 mutants, indicating that HDT701 functions upstream of Ehd1 in controlling flowering time. Transcript levels of OsINDETERMINATE SPIKELET 1 (OsIDS1), an upstream repressor of Ehd1, were significantly increased in the mutants while those of OsGI and Hd1 were reduced. Chromatin-immunoprecipitation assays revealed that HDT701 directly binds to the promoter region of OsIDS1. These results suggest that HDT701 induces flowering by suppressing OsIDS1.

Histone H4-Specific Deacetylation at Active Coding Regions by Hda1C

  • Lee, Min Kyung;Kim, TaeSoo
    • Molecules and Cells
    • /
    • 제43권10호
    • /
    • pp.841-847
    • /
    • 2020
  • Histone acetylation and deacetylation play central roles in the regulation of chromatin structure and transcription by RNA polymerase II (RNA Pol II). Although Hda1 histone deacetylase complex (Hda1C) is known to selectively deacetylate histone H3 and H2B to repress transcription, previous studies have suggested its potential roles in histone H4 deacetylation. Recently, we have shown that Hda1C has two distinct functions in histone deacetylation and transcription. Histone H4-specific deacetylation at highly transcribed genes negatively regulates RNA Pol II elongation and H3 deacetylation at inactive genes fine-tunes the kinetics of gene induction upon environmental changes. Here, we review the recent understandings of transcriptional regulation via histone deacetylation by Hda1C. In addition, we discuss the potential mechanisms for histone substrate switching by Hda1C, depending on transcriptional frequency and activity.