DOI QR코드

DOI QR Code

Histone H4-Specific Deacetylation at Active Coding Regions by Hda1C

  • Lee, Min Kyung (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University) ;
  • Kim, TaeSoo (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
  • Received : 2020.06.29
  • Accepted : 2020.08.24
  • Published : 2020.10.31

Abstract

Histone acetylation and deacetylation play central roles in the regulation of chromatin structure and transcription by RNA polymerase II (RNA Pol II). Although Hda1 histone deacetylase complex (Hda1C) is known to selectively deacetylate histone H3 and H2B to repress transcription, previous studies have suggested its potential roles in histone H4 deacetylation. Recently, we have shown that Hda1C has two distinct functions in histone deacetylation and transcription. Histone H4-specific deacetylation at highly transcribed genes negatively regulates RNA Pol II elongation and H3 deacetylation at inactive genes fine-tunes the kinetics of gene induction upon environmental changes. Here, we review the recent understandings of transcriptional regulation via histone deacetylation by Hda1C. In addition, we discuss the potential mechanisms for histone substrate switching by Hda1C, depending on transcriptional frequency and activity.

Keywords

References

  1. Buker, S.M., Iida, T., Buhler, M., Villen, J., Gygi, S.P., Nakayama, J., and Moazed, D. (2007). Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Nat. Struct. Mol. Biol. 14, 200-207. https://doi.org/10.1038/nsmb1211
  2. Camblong, J., Beyrouthy, N., Guffanti, E., Schlaepfer, G., Steinmetz, L.M., and Stutz, F. (2009). Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev. 23, 1534-1545. https://doi.org/10.1101/gad.522509
  3. Camblong, J., Iglesias, N., Fickentscher, C., Dieppois, G., and Stutz, F. (2007). Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131, 706-717. https://doi.org/10.1016/j.cell.2007.09.014
  4. Carmen, A.A., Rundlett, S.E., and Grunstein, M. (1996). HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem. 271, 15837-15844. https://doi.org/10.1074/jbc.271.26.15837
  5. Carrozza, M.J., Li, B., Florens, L., Suganuma, T., Swanson, S.K., Lee, K.K., Shia, W.J., Anderson, S., Yates, J., Washburn, M.P., et al. (2005). Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581-592. https://doi.org/10.1016/j.cell.2005.10.023
  6. Govind, C.K., Qiu, H., Ginsburg, D.S., Ruan, C., Hofmeyer, K., Hu, C., Swaminathan, V., Workman, J.L., Li, B., and Hinnebusch, A.G. (2010). Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol. Cell 39, 234-246. https://doi.org/10.1016/j.molcel.2010.07.003
  7. Ha, S.D., Ham, S., Kim, M.Y., Kim, J.H., Jang, I., Lee, B.B., Lee, M.K., Hwang, J.T., Roh, T.Y., and Kim, T. (2019). Transcription-dependent targeting of Hda1C to hyperactive genes mediates H4-specific deacetylation in yeast. Nat. Commun. 10, 4270. https://doi.org/10.1038/s41467-019-12077-w
  8. Joshi, A.A. and Struhl, K. (2005). Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell 20, 971-978. https://doi.org/10.1016/j.molcel.2005.11.021
  9. Keogh, M.C., Kurdistani, S.K., Morris, S.A., Ahn, S.H., Podolny, V., Collins, S.R., Schuldiner, M., Chin, K., Punna, T., Thompson, N.J., et al. (2005). Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593-605. https://doi.org/10.1016/j.cell.2005.10.025
  10. Kim, J.H., Lee, B.B., Oh, Y.M., Zhu, C., Steinmetz, L.M., Lee, Y., Kim, W.K., Lee, S.B., Buratowski, S., and Kim, T. (2016). Modulation of mRNA and lncRNA expression dynamics by the Set2-Rpd3S pathway. Nat. Commun. 7, 13534. https://doi.org/10.1038/ncomms13534
  11. Kim, K., Eom, J., and Jung, I. (2019a). Characterization of structural variations in the context of 3D chromatin structure. Mol. Cells 42, 512-522. https://doi.org/10.14348/molcells.2019.0137
  12. Kim, M.Y., Lee, J.E., Kim, L.K., and Kim, T. (2019b). Epigenetic memory in gene regulation and immune response. BMB Rep. 52, 127-132. https://doi.org/10.5483/BMBRep.2019.52.2.257
  13. Kim, T. and Buratowski, S. (2009). Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5' transcribed regions. Cell 137, 259-272. https://doi.org/10.1016/j.cell.2009.02.045
  14. Kim, T., Xu, Z., Clauder-Munster, S., Steinmetz, L.M., and Buratowski, S. (2012). Set3 HDAC mediates effects of overlapping noncoding transcription on gene induction kinetics. Cell 150, 1158-1169. https://doi.org/10.1016/j.cell.2012.08.016
  15. Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705. https://doi.org/10.1016/j.cell.2007.02.005
  16. Krogan, N.J., Kim, M., Tong, A., Golshani, A., Cagney, G., Canadien, V., Richards, D.P., Beattie, B.K., Emili, A., Boone, C., et al. (2003). Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207-4218. https://doi.org/10.1128/MCB.23.12.4207-4218.2003
  17. Lee, B.B., Choi, A., Kim, J.H., Jun, Y., Woo, H., Ha, S.D., Yoon, C.Y., Hwang, J.T., Steinmetz, L., Buratowski, S., et al. (2018). Rpd3L HDAC links H3K4me3 to transcriptional repression memory. Nucleic Acids Res. 46, 8261-8274. https://doi.org/10.1093/nar/gky573
  18. Lee, J.H., Maskos, K., and Huber, R. (2009). Structural and functional studies of the yeast class II Hda1 histone deacetylase complex. J. Mol. Biol. 391, 744-757. https://doi.org/10.1016/j.jmb.2009.06.059
  19. Lenstra, T.L., Benschop, J.J., Kim, T., Schulze, J.M., Brabers, N.A., Margaritis, T., van de Pasch, L.A., van Heesch, S.A., Brok, M.O., Groot Koerkamp, M.J., et al. (2011). The specificity and topology of chromatin interaction pathways in yeast. Mol. Cell 42, 536-549. https://doi.org/10.1016/j.molcel.2011.03.026
  20. Lewicki, M.C., Srikumar, T., Johnson, E., and Raught, B. (2015). The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery. J. Proteomics 118, 39-48. https://doi.org/10.1016/j.jprot.2014.11.012
  21. Li, B., Carey, M., and Workman, J.L. (2007a). The role of chromatin during transcription. Cell 128, 707-719. https://doi.org/10.1016/j.cell.2007.01.015
  22. Li, B., Gogol, M., Carey, M., Lee, D., Seidel, C., and Workman, J.L. (2007b). Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316, 1050-1054. https://doi.org/10.1126/science.1139004
  23. Li, B., Gogol, M., Carey, M., Pattenden, S.G., Seidel, C., and Workman, J.L. (2007c). Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev. 21, 1422-1430. https://doi.org/10.1101/gad.1539307
  24. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260. https://doi.org/10.1038/38444
  25. Malave, T.M. and Dent, S.Y. (2006). Transcriptional repression by Tup1- Ssn6. Biochem. Cell Biol. 84, 437-443.
  26. Martin, D.G., Baetz, K., Shi, X., Walter, K.L., MacDonald, V.E., Wlodarski, M.J., Gozani, O., Hieter, P., and Howe, L. (2006). The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3. Mol. Cell. Biol. 26, 7871-7879. https://doi.org/10.1128/MCB.00573-06
  27. Pelechano, V. and Steinmetz, L.M. (2013). Gene regulation by antisense transcription. Nat. Rev. Genet. 14, 880-893. https://doi.org/10.1038/nrg3594
  28. Petesch, S.J. and Lis, J.T. (2012). Overcoming the nucleosome barrier during transcript elongation. Trends Genet. 28, 285-294. https://doi.org/10.1016/j.tig.2012.02.005
  29. Richmond, T.J., Finch, J.T., Rushton, B., Rhodes, D., and Klug, A. (1984). Structure of the nucleosome core particle at 7 A resolution. Nature 311, 532-537. https://doi.org/10.1038/311532a0
  30. Rundlett, S.E., Carmen, A.A., Kobayashi, R., Bavykin, S., Turner, B.M., and Grunstein, M. (1996). HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. U. S. A. 93, 14503-14508. https://doi.org/10.1073/pnas.93.25.14503
  31. Saksouk, N., Avvakumov, N., Champagne, K.S., Hung, T., Doyon, Y., Cayrou, C., Paquet, E., Ullah, M., Landry, A.J., Cote, V., et al. (2009). HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol. Cell 33, 257-265. https://doi.org/10.1016/j.molcel.2009.01.007
  32. Schaft, D., Roguev, A., Kotovic, K.M., Shevchenko, A., Sarov, M., Shevchenko, A., Neugebauer, K.M., and Stewart, A.F. (2003). The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res. 31, 2475-2482. https://doi.org/10.1093/nar/gkg372
  33. Shen, H., Zhu, Y., Wang, C., Yan, H., Teng, M., and Li, X. (2016). Structural and histone binding ability characterization of the ARB2 domain of a histone deacetylase Hda1 from Saccharomyces cerevisiae. Sci. Rep. 6, 33905. https://doi.org/10.1038/srep33905
  34. Shi, X., Hong, T., Walter, K.L., Ewalt, M., Michishita, E., Hung, T., Carney, D., Pena, P., Lan, F., Kaadige, M.R., et al. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96-99. https://doi.org/10.1038/nature04835
  35. Shi, X., Kachirskaia, I., Walter, K.L., Kuo, J.H., Lake, A., Davrazou, F., Chan, S.M., Martin, D.G., Fingerman, I.M., Briggs, S.D., et al. (2007). Proteomewide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J. Biol. Chem. 282, 2450-2455. https://doi.org/10.1074/jbc.C600286200
  36. Strahl, B.D., Grant, P.A., Briggs, S.D., Sun, Z.W., Bone, J.R., Caldwell, J.A., Mollah, S., Cook, R.G., Shabanowitz, J., Hunt, D.F., et al. (2002). Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 22, 1298-1306. https://doi.org/10.1128/MCB.22.5.1298-1306.2002
  37. Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., and Villen, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat. Methods 10, 676-682. https://doi.org/10.1038/nmeth.2519
  38. Taverna, S.D., Ilin, S., Rogers, R.S., Tanny, J.C., Lavender, H., Li, H., Baker, L., Boyle, J., Blair, L.P., Chait, B.T., et al. (2006). Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol. Cell 24, 785-796. https://doi.org/10.1016/j.molcel.2006.10.026
  39. Venkatesh, S., Li, H., Gogol, M.M., and Workman, J.L. (2016). Selective suppression of antisense transcription by Set2-mediated H3K36 methylation. Nat. Commun. 7, 13610. https://doi.org/10.1038/ncomms13610
  40. Venters, B.J., Wachi, S., Mavrich, T.N., Andersen, B.E., Jena, P., Sinnamon, A.J., Jain, P., Rolleri, N.S., Jiang, C., Hemeryck-Walsh, C., et al. (2011). A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol. Cell 41, 480-492. https://doi.org/10.1016/j.molcel.2011.01.015
  41. Wang, Z., Zang, C., Cui, K., Schones, D.E., Barski, A., Peng, W., and Zhao, K. (2009). Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019-1031. https://doi.org/10.1016/j.cell.2009.06.049
  42. Weiner, A., Chen, H.V., Liu, C.L., Rahat, A., Klien, A., Soares, L., Gudipati, M., Pfeffner, J., Regev, A., Buratowski, S., et al. (2012). Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol. 10, e1001369. https://doi.org/10.1371/journal.pbio.1001369
  43. Woo, H., Dam Ha, S., Lee, S.B., Buratowski, S., and Kim, T. (2017). Modulation of gene expression dynamics by co-transcriptional histone methylations. Exp. Mol. Med. 49, e326. https://doi.org/10.1038/emm.2017.19
  44. Wu, J., Carmen, A.A., Kobayashi, R., Suka, N., and Grunstein, M. (2001a). HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1. Proc. Natl. Acad. Sci. U. S. A. 98, 4391-4396. https://doi.org/10.1073/pnas.081560698
  45. Wu, J., Suka, N., Carlson, M., and Grunstein, M. (2001b). TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol. Cell 7, 117-126. https://doi.org/10.1016/S1097-2765(01)00160-5
  46. Xu, Z., Wei, W., Gagneur, J., Clauder-Munster, S., Smolik, M., Huber, W., and Steinmetz, L.M. (2011). Antisense expression increases gene expression variability and locus interdependency. Mol. Syst. Biol. 7, 468. https://doi.org/10.1038/msb.2011.1

Cited by

  1. Core promoter activity contributes to chromatin-based regulation of internal cryptic promoters vol.49, pp.14, 2021, https://doi.org/10.1093/nar/gkab639