• Title/Summary/Keyword: Histone Methylation

Search Result 102, Processing Time 0.478 seconds

Epigenetic regulation of fungal development and pathogenesis in the rice blast fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.19-19
    • /
    • 2018
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed first to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Based on the database entries, we carried out functional analysis of genes encoding histone modifying enzymes. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes is followed by ChIP-seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Inactivation of the genes involved in histone H3-lysine 4 methylation abates the biosynthesis of pigment azaphilone in Monascus purpureus

  • Balakrishnan, Bijinu;Lim, Yoon Ji;Suh, Jae-Won;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.157-165
    • /
    • 2019
  • Di- and tri-methylation of lysine 4 on histone H3 (H3K4me2 and H3K4me3, respectively) are epigenetic markers of active genes. Complex associated with Set1 (COMPASS) mediates these H3K4 methylations. The involvement of COMPASS activity in secondary metabolite (SM) biosynthesis was first demonstrated with an Aspergillus nidulans cclA knockout mutant. The cclA knockout induced the transcription of two cryptic SM biosynthetic gene clusters, leading to the production of the cognate SM. Monascus spp. are filamentous fungi that have been used for food fermentation in eastern Asia, and the pigment Monascus azaphione (MAz) is their main SM. Monascus highly produces MAz, implying that the cognate biosynthetic genes are highly active in transcription. In the present study, we examined how COMPASS activity modulates MAz biosynthesis by inactivating Monascus purpureus cclA (Mp-cclA) and swd1 (Mp-swd1). For both ${\Delta}Mp-cclA$ and ${\Delta}Mp-swd1$, a reduction in MAz production, accompanied by an abated cell growth, was observed. Suppression of MAz production was more effective in an agar culture than in the submerged liquid culture. The fidelity of the ${\Delta}Mp-swd1$ phenotypes was verified by restoring the WT-like phenotypes in a reversion recombinant mutant, namely, trpCp: Mp-swd1, that was generated from the ${\Delta}Mp-swd1$ mutant. Real-time quantitative Polymerase chain reaction analysis indicated that the transcription of MAz biosynthetic genes was repressed in the ${\Delta}Mp-swd1$ mutant. This study demonstrated that MAz biosynthesis is under the control of COMPASS activity and that the extent of this regulation is dependent on growth conditions.

Histone Modifications During DNA Replication

  • Falbo, Karina B.;Shen, Xuetong
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.149-154
    • /
    • 2009
  • Faithful and accurate replication of the DNA molecule is essential for eukaryote organisms. Nonetheless, in the last few years it has become evident that inheritance of the chromatin states associated with different regions of the genome is as important as the faithful inheritance of the DNA sequence itself. Such chromatin states are determined by a multitude of factors that act to modify not only the DNA molecule, but also the histone proteins associated with it. For instance, histones can be posttranslationally modified, and it is well established that these posttranslational marks are involved in several essential nuclear processes such as transcription and DNA repair. However, recent evidence indicates that posttranslational modifications of histones might be relevant during DNA replication. Hence, the aim of this review is to describe the most recent publications related to the role of histone posttranslational modifications during DNA replication.

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Singh, Parul;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.

Alteration of DNA Methylation in Gastric Cancer with Chemotherapy

  • Choi, Su Jin;Jung, Seok Won;Huh, Sora;Chung, Yoon-Seok;Cho, Hyosun;Kang, Hyojeung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1367-1378
    • /
    • 2017
  • Epigenetic alterations such as DNA methylation, histone acetylation, and chromatin remodeling can control gene expression by regulating gene transcription. DNA methylation is one of the frequent epigenetic events that play important roles in cancer development. Cancer cells can gain significant resistance to anticancer drugs and escape programmed cell death through major epigenetic changes, including DNA methylation. To date, several research groups have identified instances of both (i) hypermethylation of tumor suppressor genes, and (ii) global hypomethylation of oncogenes. These changes in DNA methylation status could be used as biomarkers for the diagnosis and prognosis of cancer patients undergoing chemotherapies or other clinical therapies. Herein, we describe genes for which methylation is dependent upon anticancer drug resistance in patients with gastric cancer; we then suggest a significant epigenetic target to focus on for overcoming anticancer drug resistance.

UNDERSTANDING OF EPIGENETICS AND DNA METHYLATION (후생유전학 (Epigenetics)과 DNA methylation의 이해)

  • Oh, Jung-Hwan;Kwon, Young-Dae;Yoon, Byung-Wook;Choi, Byung-Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.3
    • /
    • pp.302-309
    • /
    • 2008
  • Epigenetic is usually referring to heritable traits that do not involve changes to the underlying DNA sequence. DNA methylation is known to serve as cellular memory. and is one of the most important mechanism of epigenetic. DNA methylation is a covalent modification in which the target molecules for methylation in mammalian DNA are cytosine bases in CpG dinucleotides. The 5' position of cytosine is methylated in a reaction catalyzed by DNA methyltransferases; DNMTl, DNMT3a, and DNMT3b. There are two different regions in the context of DNA methylation: CpG poor regions and CpG islands. The intergenic and the intronic region is considered to be CpG poor, and CpG islands are discrete CpG-rich regions which are often found in promoter regions. Normally, CpG poor regions are usually methylated whereas CpG islands are generally hypomethylated. DNA methylation is involved in various biological processes such as tissue-specific gene expression, genomic imprinting, and X chromosome inactivation. In general. cancer cells are characterized by global genomic hypomethylation and focal hypermethylation of CpG islands, which are generally unmethylated in normal cells. Gene silencing by CpG hypermethylation at the promotors of tumor suppressor genes is probably the most common mechanism of tumor suppressor inactivation in cancer.

Fission Yeast-based Screening to Identify Putative HDAC Inhibitors Using a Telomeric Reporter Strain

  • Chung, Kyung-Sook;Ahn, Jiwon;Choi, Chung-Hae;Yim, Nam Hui;Kang, Chang-Mo;Kim, Chun-Ho;Lee, Kyeong;Park, Hee-Moon;Song, Kyung-Bin;Won, Misun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.93-99
    • /
    • 2008
  • Transcriptional silencing is regulated by promoter methylation and histone modifications such as methylation and acetylation. We constructed a Schizosaccaromyces pombe reporter strain, KCT120a, to identify modifiers of transcriptional silencing, by inserting the $ura4^+$ gene into a heterochromatic telomere region. Two compounds inhibited the activity of histone deacetylases, induced acetylation of histone H3 and caused apoptotic cell death in HeLa cells. Expression of gelsolin and $p21^{waf1/cip1}$ also increased, as it does in response to HDAC inhibitors such as TSA. Therefore, these compounds appear to be potent inhibitors of HDACs, and hence potential anti-cancer drugs. Our observations suggest that a yeast cell-based assay system for transcriptional silencing may be useful for identifying histone deacetylase inhibitors and other agents affecting chromatin remodeling.

Methylated-UHRF1 and PARP1 interaction is critical for homologous recombination

  • Hahm, Ja Young;Kang, Joo-Young;Park, Jin Woo;Jung, Hyeonsoo;Seo, Sang-Beom
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.112-117
    • /
    • 2020
  • A recent study suggested that methylation of ubiquitin-like with PHD and RING finger domain 1 (UHRF1) is regulated by SET7 and lysine-specific histone demethylase 1A (LSD1) and is essential for homologous recombination (HR). The study demonstrated that SET7-mediated methylation of UHRF1 promotes polyubiquitination of proliferating cell nuclear antigen (PCNA), inducing HR. However, studies on mediators that interact with and recruit UHRF1 to damaged lesions are needed to elucidate the mechanism of UHRF1 methylation-induced HR. Here, we identified that poly [ADP-ribose] polymerase 1 (PARP1) interacts with damage-induced methylated UHRF1 specifically and mediates UHRF1 to induce HR progression. Furthermore, cooperation of UHRF1-PARP1 is essential for cell viability, suggesting the importance of the interaction of UHRF1-PARP1 for damage tolerance in response to damage. Our data revealed that PARP1 mediates the HR mechanism, which is regulated by UHRF1 methylation. The data also indicated the significant role of PARP1 as a mediator of UHRF1 methylation-correlated HR pathway.

The first review study on association of DNA methylation with gastric cancer in Iranian population

  • Shahbazi, Mahsa;Yari, Kheirollah;Rezania, Niloufar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2499-2506
    • /
    • 2016
  • Background: Gastric cancer (GC) is the second leading cause of cancer-related death worldwide. Several environmental, genetic and epigenetic factors have been suggested to have a role in GC development. Epigenetic mechanisms like histone changes and promoter hyper-methylation are now being increasingly studied. Associations between methylation of many gene promoters with the risk of gastric cancer have been investigated worldwide. Such aberrant methylation may result in silencing of specific genes related to cell cycling, cell adhesion, apoptosis and DNA repair. Thus this molecular mechanism might have a key role in proliferation and migration of cancerous cells. Materials and Methods: In this review article we included studies conducted on DNA methylation and gastric cancer in Iranian populations. Using Science direct, Pubmed/PMC, Springer, Wiley online library and SciELO databases, all published data until 31 January 2016 were gathered. We also searched Science direct data base for similar investigations around the world to make a comparison between Iran and other countries. Results: By searching these databases, we found that the association between methylation of seven gene promoters and gastric cancer had been studied in Iran until 31 January 2016. These genes were p16, hLMH1, E-cadherin, CTLA4, $THR{\beta}$, mir9 and APC. Searching in science direct database also showed that 92 articles had been published around the world till January 2016. Our investigation revealed that despite the importance of GC and its high prevalence in Iran, the methylation status of only a few gene promoters has been studied so far. More studies with higher sample numbers are needed to reveal the relation of methylation status of gene promoters to gastric cancer in Iran. Conclusions: Further studies will be helpful in identifying associations of DNA methylation in candidate genes with gastric cancer risk in Iranian populations.

Effects of 5-azacytidine, a DNA methylation inhibitor, on embryogenic callus formation and shoot regeneration from rice mature seeds (벼 성숙종자로부터 배상체 캘러스 형성 및 식물체 재분화에 DNA methylation 억제제인 5-azacytidine의 영향)

  • Lee, Yeon-Hee;Lee, Jung-Sook;Kim, Soo-Yun;Sohn, Seong-Han;Kim, Dool-Yi;Yoon, In-Sun;Kweon, Soon-Jong;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • The modification of DNA and histone plays an important role for gene expression in plant development. The objective of this research is to observe the effects of methylation on the gene expression during dedifferentiation from rice mature seeds to callus and differentiation from callus to shoots. The embryogenic callus with ability to shoot regeneration was not induced on the N6A medium supplemented with 5-azacytidine and abnormal callus with brown color was formed. When the normal rice callus was placed on the regeneration MSRA medium supplemented with 5-azacytidine, the shoot regeneration was inhibited. The results showed that 5-azacytidine, DNA demethylating agent, had negative effects on normal embryogenic callus formation and shoot regeneration. This suggested that DNA methylation of some genes was required for normal cell dedifferentiation and differentiation in tissue culture. The microarray and $GeneFishig^{TM}$ DEG screening were used to observe the gene transcript profile in callus induction and regeneration on N6A (N6 medium + 5-azaC) and MSRA (MS regeneration medium + 5-azaC). Subsets of genes were up-regulated or down-regulated in response to 5-azaC treatments. The genes related with epigenetic regulation, electron transport, nucleic acid metabolism and response to stress were up and down regulated. The different expression of some genes (germin like protein etc.) during callus induction and shoot regeneration was confirmed using RT-PCR and northern blot analysis.