DOI QR코드

DOI QR Code

Histone Modifications During DNA Replication

  • Falbo, Karina B. (Department of Carcinogenesis, Science Park Research Division, MD Anderson Cancer Center) ;
  • Shen, Xuetong (Department of Carcinogenesis, Science Park Research Division, MD Anderson Cancer Center)
  • Received : 2009.08.31
  • Accepted : 2009.09.02
  • Published : 2009.09.30

Abstract

Faithful and accurate replication of the DNA molecule is essential for eukaryote organisms. Nonetheless, in the last few years it has become evident that inheritance of the chromatin states associated with different regions of the genome is as important as the faithful inheritance of the DNA sequence itself. Such chromatin states are determined by a multitude of factors that act to modify not only the DNA molecule, but also the histone proteins associated with it. For instance, histones can be posttranslationally modified, and it is well established that these posttranslational marks are involved in several essential nuclear processes such as transcription and DNA repair. However, recent evidence indicates that posttranslational modifications of histones might be relevant during DNA replication. Hence, the aim of this review is to describe the most recent publications related to the role of histone posttranslational modifications during DNA replication.

Keywords

References

  1. Ahmad, K., and Henikoff, S. (2002). The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191-1200 https://doi.org/10.1016/S1097-2765(02)00542-7
  2. Alexandrow, M.G., and Hamlin, J.L. (2005). Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J. Cell Biol. 168, 875-886 https://doi.org/10.1083/jcb.200409055
  3. Allis, C.D., Berger, S.L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., Reinberg, D., Shi, Y., Shiekhattar, R., et al. (2007). New nomenclature for chromatin-modifying enzymes. Cell 131, 633-636 https://doi.org/10.1016/j.cell.2007.10.039
  4. Annunziato, A.T., and Seale, R.L. (1983). Histone deacetylation is required for the maturation of newly replicated chromatin. J. Biol. Chem. 258, 12675-12684
  5. Balhorn, R., Chalkley, R., and Granner, D. (1972). Lysine-rich histone phosphorylation. A positive correlation with cell replication. Biochemistry 11, 1094-1098 https://doi.org/10.1021/bi00756a023
  6. Barman, H.K., Takami, Y., Ono, T., Nishijima, H., Sanematsu, F.,Shibahara, K., and Nakayama, T. (2006). Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells. Biochem. Biophys. Res. Commun. 345, 1547-1557 https://doi.org/10.1016/j.bbrc.2006.05.079
  7. Barman, H.K., Takami, Y., Nishijima, H., Shibahara, K., Sanematsu, F., and Nakayama, T. (2008). Histone acetyltransferase-1 regulates integrity of cytosolic histone H3-H4 containing complex. Biochem. Biophys. Res. Commun. 373, 624-630 https://doi.org/10.1016/j.bbrc.2008.06.100
  8. Benson, L.J., Gu, Y., Yakovleva, T., Tong, K., Barrows, C., Strack, C.L., Cook, R.G., Mizzen, C.A., and Annunziato, A.T. (2006). Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange. J. Biol. Chem. 281, 9287-9296 https://doi.org/10.1074/jbc.M512956200
  9. Bradbury, E.M., Inglis, R.J., and Matthews, H.R. (1974). Control of cell division by very lysine rich histone (F1) phosphorylation. Nature 247, 257-261 https://doi.org/10.1038/247257a0
  10. Celic, I., Masumoto, H., Griffith, W.P., Meluh, P., Cotter, R.J., Boeke, J.D., and Verreault, A. (2006). The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr. Biol. 16, 1280-1289 https://doi.org/10.1016/j.cub.2006.06.023
  11. Celic, I., Verreault, A., and Boeke, J.D. (2008). Histone H3 K56 hyperacetylation perturbs replisomes and causes DNA damage. Genetics 179, 1769-1784 https://doi.org/10.1534/genetics.108.088914
  12. Chen, C.C., Carson, J.J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., and Tyler, J.K. (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134, 231-243 https://doi.org/10.1016/j.cell.2008.06.035
  13. Chiani, F., Di Felice, F., and Camilloni, G. (2006). SIR2 modifies histone H4-K16 acetylation and affects superhelicity in the ARS region of plasmid chromatin in Saccharomyces cerevisiae. Nucleic Acids Res. 34, 5426-5437 https://doi.org/10.1093/nar/gkl678
  14. Collins, S.R., Miller, K.M., Maas, N.L., Roguev, A., Fillingham, J., Chu, C.S., Schuldiner, M., Gebbia, M., Recht, J., Shales, M., et al. (2007). Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806-810 https://doi.org/10.1038/nature05649
  15. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W., and Richmond, T.J. (2002). Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097-1113 https://doi.org/10.1016/S0022-2836(02)00386-8
  16. Deterding, L.J., Bunger, M.K., Banks, G.C., Tomer, K.B., and Archer, T.K. (2008). Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 Isoforms upon CDK inhibitor treatment using mass spectrometry. J. Proteome Res. 7, 2368-2379 https://doi.org/10.1021/pr700790a
  17. Driscoll, R., Hudson, A., and Jackson, S.P. (2007). Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315, 649-652 https://doi.org/10.1126/science.1135862
  18. Duro, E., Vaisica, J.A., Brown, G.W., and Rouse, J. (2008). Budding yeast Mms22 and Mms1 regulate homologous recombination induced by replisome blockage. DNA Repair 7, 811-818 https://doi.org/10.1016/j.dnarep.2008.01.007
  19. Dutnall, R.N., Tafrov, S.T., Sternglanz, R., and Ramakrishnan, V. (1998). Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94, 427-438 https://doi.org/10.1016/S0092-8674(00)81584-6
  20. English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E., and Tyler, J.K. (2006). Structural basis for the histone chaperone activity of Asf1. Cell 127, 495-508 https://doi.org/10.1016/j.cell.2006.08.047
  21. Falbo, K.B., and Shen, X. (2006). Chromatin remodeling in DNA replication. J. Cell Biochem. 97, 684-689 https://doi.org/10.1002/jcb.20752
  22. Fan, Y., Nikitina, T., Zhao, J., Fleury, T.J., Bhattacharyya, R., Bouhassira, E.E., Stein, A., Woodcock, C.L., and Skoultchi, A.I. (2005). Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199-1212 https://doi.org/10.1016/j.cell.2005.10.028
  23. Fang, J., Feng, Q., Ketel, C.S., Wang, H., Cao, R., Xia, L., Erdjument-Bromage, H., Tempst, P., Simon, J.A., and Zhang, Y. (2002). Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol. 12, 1086-1099 https://doi.org/10.1016/S0960-9822(02)00924-7
  24. Fisher, D., and Mechali, M. (2003). Vertebrate HoxB gene expression requires DNA replication. EMBO J 22, 3737-3748 https://doi.org/10.1093/emboj/cdg352
  25. Garcia, B.A., Busby, S.A., Barber, C.M., Shabanowitz, J., Allis, C.D., and Hunt, D.F. (2004). Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry. J. Proteome Res. 3, 1219-1227 https://doi.org/10.1021/pr0498887
  26. Garcia, B.A., Hake, S.B., Diaz, R.L., Kauer, M., Morris, S.A., Recht, J., Shabanowitz, J., Mishra, N., Strahl, B.D., Allis, C.D., et al. (2007). Organismal differences in post-translational modifications in histones H3 and H4. J. Biol. Chem. 282, 7641-7655 https://doi.org/10.1074/jbc.M607900200
  27. Glowczewski, L., Waterborg, J.H., and Berman, J.G. (2004). Yeast chromatin assembly complex 1 protein excludes nonacetylatable forms of histone H4 from chromatin and the nucleus. Mol. Cell. Biol. 24, 10180-10192 https://doi.org/10.1128/MCB.24.23.10180-10192.2004
  28. Groth, A., Ray-Gallet, D., Quivy, J.P., Lukas, J., Bartek, J., and Almouzni, G. (2005). Human Asf1 regulates the flow of S phase histones during replicational stress. Mol. Cell 17, 301-311 https://doi.org/10.1016/j.molcel.2004.12.018
  29. Groth, A., Rocha, W., Verreault, A., and Almouzni, G. (2007). Chromatin challenges during DNA replication and repair. Cell 128, 721-733 https://doi.org/10.1016/j.cell.2007.01.030
  30. Gurley, L.R., Walters, R.A., and Tobey, R.A. (1975). Sequential phsophorylation of histone subfractions in the Chinese hamster cell cycle. J. Biol. Chem. 250, 3936-3944
  31. Halmer, L., and Gruss, C. (1996). Effects of cell cycle dependent histone H1 phosphorylation on chromatin structure and chromatin replication. Nucleic Acids Res. 24, 1420-1427 https://doi.org/10.1093/nar/24.8.1420
  32. Han, J., Zhou, H., Horazdovsky, B., Zhang, K., Xu, R.M., and Zhang, Z. (2007a). Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315, 653-655 https://doi.org/10.1126/science.1133234
  33. Han, J., Zhou, H., Li, Z., Xu, R.M., and Zhang, Z. (2007b). Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity. J. Biol. Chem. 282, 28587-28596 https://doi.org/10.1074/jbc.M702496200
  34. Huang, S., Zhou, H., Katzmann, D., Hochstrasser, M., Atanasova, E., and Zhang, Z. (2005). Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc. Natl. Acad. Sci. USA 102, 13410-13415 https://doi.org/10.1073/pnas.0506176102
  35. Huen, M.S., Sy, S.M., van Deursen, J.M., and Chen, J. (2008). Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J. Biol. Chem. 283, 11073-11077 https://doi.org/10.1074/jbc.C700242200
  36. Hyland, E.M., Cosgrove, M.S., Molina, H., Wang, D., Pandey, A., Cottee, R.J., and Boeke, J.D. (2005). Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol. Cell Biol. 25, 10060-10070 https://doi.org/10.1128/MCB.25.22.10060-10070.2005
  37. Jorgensen, S., Elvers, I., Trelle, M.B., Menzel, T., Eskildsen, M., Jensen, O.N., Helleday, T., Helin, K., and Sorensen, C.S. (2007). The histone methyltransferase SET8 is required for S-phase progression. J. Cell Biol. 179, 1337-1345 https://doi.org/10.1083/jcb.200706150
  38. Karachentsev, D., Sarma, K., Reinberg, D., and Steward, R. (2005). PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 19, 431-435 https://doi.org/10.1101/gad.1263005
  39. Kim, H.S., Rhee, D.K., and Jang, Y.K. (2008). Methylations of histone H3 lysine 9 and lysine 36 are functionally linked to DNA replication checkpoint control in fission yeast. Biochem. Biophys. Res. Commun. 368, 419-425 https://doi.org/10.1016/j.bbrc.2008.01.104
  40. Li, Q., Zhou, H., Wurtele, H., Davies, B., Horazdovsky, B., Verreault, A., and Zhang, Z. (2008). Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134, 244-255 https://doi.org/10.1016/j.cell.2008.06.018
  41. Lin, C., and Yuan, Y.A. (2008). Structural insights into histone H3 lysine 56 acetylation by Rtt109. Structure 16, 1503-1510 https://doi.org/10.1016/j.str.2008.07.006
  42. Loyola, A., Bonaldi, T., Roche, D., Imhof, A., and Almouzni, G. (2006). PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24, 309-316 https://doi.org/10.1016/j.molcel.2006.08.019
  43. Lu, Z.H., Sittman, D.B., Brown, D.T., Munshi, R., and Leno, G.H. (1997). Histone H1 modulates DNA replication through multiple pathways in Xenopus egg extract. J. Cell Sci. 110, 2745-2758
  44. Ma, X.J., Wu, J., Altheim, B.A., Schultz, M.C., and Grunstein, M. (1998). Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast. Proc. Natl. Acad Sci. USA 95, 6693-6698 https://doi.org/10.1073/pnas.95.12.6693
  45. Maas, N.L., Miller, K.M., DeFazio, L.G., and Toczyski, D.P. (2006). Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol. Cell 23, 109-119 https://doi.org/10.1016/j.molcel.2006.06.006
  46. Makowski, A.M., Dutnall, R.N., and Annunziato, A.T. (2001). Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J. Biol. Chem. 276, 43499-43502 https://doi.org/10.1074/jbc.C100549200
  47. Masumoto, H., Hawke, D., Kobayashi, R., and Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294-298 https://doi.org/10.1038/nature03714
  48. Miller, A., Yang, B., Foster, T., and Kirchmaier, A.L. (2008). Prolifer ating cell nuclear antigen and ASF1 modulate silent chromatin in Saccharomyces cerevisiae via lysine 56 on histone H3. Genetics 179, 793-809 https://doi.org/10.1534/genetics.107.084525
  49. Ozdemir, A., Spicuglia, S., Lasonder, E., Vermeulen, M., Campsteijn, C., Stunnenberg, H.G., and Logie, C. (2005). Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae. J. Biol. Chem. 280, 25949-25952 https://doi.org/10.1074/jbc.C500181200
  50. Recht, J., Tsubota, T., Tanny, J.C., Diaz, R.L., Berger, J.M., Zhang, X., Garcia, B.A., Shabanowitz, J., Burlingame, A.L., Hunt, D.F., et al. (2006). Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc. Natl. Acad. Sci. USA 103, 6988-6993 https://doi.org/10.1073/pnas.0601676103
  51. Rice, J.C., Nishioka, K., Sarma, K., Steward, R., Reinberg, D., and Allis, C.D. (2002). Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev. 16, 2225-2230 https://doi.org/10.1101/gad.1014902
  52. Sarg, B., Helliger, W., Talasz, H., Forg, B., and Lindner, H.H. (2006). Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1. J. Biol. Chem. 281, 6573-6580 https://doi.org/10.1074/jbc.M508957200
  53. Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D., and Jenuwein, T. (2004). A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251-1262 https://doi.org/10.1101/gad.300704
  54. Shogren-Knaak, M., and Peterson, C.L. (2006). Switching on chromatin: mechanistic role of histone H4-K16 acetylation. Cell Cycle 5, 1361-1365 https://doi.org/10.4161/cc.5.13.2891
  55. Shogren-Knaak, M., Ishii, H., Sun, J.M., Pazin, M.J., Davie, J.R., and Peterson, C.L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844-847 https://doi.org/10.1126/science.1124000
  56. Sobel, R.E., Cook, R.G., Perry, C.A., Annunziato, A.T., and Allis, C.D. (1995). Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. USA 92, 1237-1241 https://doi.org/10.1073/pnas.92.4.1237
  57. Taddei, A., Roche, D., Sibarita, J.B., Turner, B.M., and Almouzni, G. (1999). Duplication and maintenance of heterochromatin domains. J. Cell Biol. 147, 1153-1166 https://doi.org/10.1083/jcb.147.6.1153
  58. Tagami, H., Ray-Gallet, D., Almouzni, G., and Nakatani, Y. (2004). Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51-61 https://doi.org/10.1016/S0092-8674(03)01064-X
  59. Thiriet, C., and Hayes, J.J. (2008). Linker histone phosphorylation regulates global timing of replication origin firing. J. Biol. Chem. 284, 2823-2329 https://doi.org/10.1074/jbc.M805617200
  60. Ulrich, H.D. (2007). Conservation of DNA damage tolerance pathways from yeast to humans. Biochem. Soc. Trans. 35, 1334-1337 https://doi.org/10.1042/BST0351334
  61. Volkel, P., and Angrand, P.O. (2007). The control of histone lysine methylation in epigenetic regulation. Biochimie 89, 1-20 https://doi.org/10.1016/j.biochi.2006.07.009
  62. Wisniewski, J.R., Zougman, A., and Mann, M. (2008). Nepsilonformylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res. 36, 570-577 https://doi.org/10.1093/nar/gkm1057
  63. Xu, F., Zhang, K., and Grunstein, M. (2005). Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121, 375-385 https://doi.org/10.1016/j.cell.2005.03.011
  64. Yang, B., Miller, A., and Kirchmaier, A.L. (2008). HST3/HST4- dependent deacetylation of lysine 56 of histone H3 in silent chromatin. Mol. Biol. Cell 19, 4993-5005 https://doi.org/10.1091/mbc.E08-05-0524
  65. Yasuda, H., Matsumoto, Y., Mita, S., Marunouchi, T., and Yamada, M. (1981). A mouse temperature-sensitive mutant defective in H1 histone phosphorylation is defective in deoxyribonucleic acid synthesis and chromosome condensation. Biochemistry 20, 4414-4419 https://doi.org/10.1021/bi00518a028
  66. Zlatanova, J., and Doenecke, D. (1994). Histone H1 zero: a major player in cell differentiation? FASEB J. 8, 1260-1268 https://doi.org/10.1096/fasebj.8.15.8001738

Cited by

  1. Arabidopsis thaliana Chromosome 4 Replicates in Two Phases That Correlate with Chromatin State vol.6, pp.6, 2009, https://doi.org/10.1371/journal.pgen.1000982
  2. The Yeast PUF Protein Puf5 Has Pop2-Independent Roles in Response to DNA Replication Stress vol.5, pp.5, 2009, https://doi.org/10.1371/journal.pone.0010651
  3. Mass Spectrometric Studies on Epigenetic Interaction Networks in Cell Differentiation vol.286, pp.15, 2011, https://doi.org/10.1074/jbc.m110.204800
  4. Gfi1b negatively regulates Rag expression directly and via the repression of FoxO1 vol.209, pp.1, 2009, https://doi.org/10.1084/jem.20110645
  5. Regulation of inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) by reversible lysine acetylation vol.109, pp.7, 2009, https://doi.org/10.1073/pnas.1119740109
  6. Nitric oxide modifies chromatin to suppress ICAM-1 expression during colonic inflammation vol.303, pp.1, 2009, https://doi.org/10.1152/ajpgi.00381.2011
  7. Enhanced top-down characterization of histone post-translational modifications vol.13, pp.10, 2009, https://doi.org/10.1186/gb-2012-13-10-r86
  8. A Role for H2B Ubiquitylation in DNA Replication vol.48, pp.5, 2012, https://doi.org/10.1016/j.molcel.2012.09.019
  9. Regulation of Matrix Metalloproteinase-9 by Epigenetic Modifications and the Development of Diabetic Retinopathy vol.62, pp.7, 2009, https://doi.org/10.2337/db12-1141