• Title/Summary/Keyword: Histone H3K27

Search Result 40, Processing Time 0.031 seconds

Comparative analysis of commonly used peak calling programs for ChIP-Seq analysis

  • Jeon, Hyeongrin;Lee, Hyunji;Kang, Byunghee;Jang, Insoon;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.42.1-42.9
    • /
    • 2020
  • Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-Seq) is a powerful technology to profile the location of proteins of interest on a whole-genome scale. To identify the enrichment location of proteins, many programs and algorithms have been proposed. However, none of the commonly used peak calling programs could accurately explain the binding features of target proteins detected by ChIP-Seq. Here, publicly available data on 12 histone modifications, including H3K4ac/me1/me2/me3, H3K9ac/me3, H3K27ac/me3, H3K36me3, H3K56ac, and H3K79me1/me2, generated from a human embryonic stem cell line (H1), were profiled with five peak callers (CisGenome, MACS1, MACS2, PeakSeq, and SISSRs). The performance of the peak calling programs was compared in terms of reproducibility between replicates, examination of enriched regions to variable sequencing depths, the specificity-to-noise signal, and sensitivity of peak prediction. There were no major differences among peak callers when analyzing point source histone modifications. The peak calling results from histone modifications with low fidelity, such as H3K4ac, H3K56ac, and H3K79me1/me2, showed low performance in all parameters, which indicates that their peak positions might not be located accurately. Our comparative results could provide a helpful guide to choose a suitable peak calling program for specific histone modifications.

Histone Methylation Regulates Retinoic Acid-induced Hoxc Gene Expression in F9 EC Cells (F9 EC 세포에서 레티노산에 의해 유도되는 Hoxc 유전자의 발현에 히스톤 메틸화가 미치는 영향)

  • Min, Hyehyun;Kim, Myoung Hee
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.703-708
    • /
    • 2015
  • Hox genes encode a highly conserved family of homeodomain-containing transcription factors controlling vertebrate pattern formation along the anteroposterior body axis during embryogenesis. Retinoic acid (RA) is a key morphogen in embryogenesis and a critical regulator of both adult and embryonic cellular activity. Specifically, RA regulates Hox gene expression in mouse- or human-derived embryonic carcinoma (EC) cells. Histone modification has been reported to play a pivotal role in the process of RA-induced gene expression and cell differentiation. As histone modification is thought to play an essential role in RA-induced Hox gene expression, we examined RA-induced initiation of collinear expression of Hox genes and the corresponding histone modifications in F9 murine embryonic teratocarcinoma (EC) cells. Hox expression patterns and histone modifications were analyzed by semiquantitative RT-PCR, RNA-sequencing, and chromatin immuno-precipitation (ChIP)-PCR analyses. The Hoxc4 gene (D0) was initiated earlier than the Hoxc5 to –c10 genes (D3) upon RA treatment (day 0 [D0], day 1 [D1], and day 3 [D3]). The Hox nonexpressing D0 sample had a strong repressive marker, H3K27me3, than the D1 and D3 samples. In the D1 and D3 samples, reduced enrichment of the H3K27me3 marker was observed in the whole cluster. The active H3K4me3 marker was closely associated with the collinear expression of Hoxc genes. Thus, the Hoxc4 gene (D1) and all Hoxc genes (D3) expressed H3K4me3 upon transcription activation. In conclusion, these data indicated that removing H3K27me3 and acquiring H3K4me3 regulated RA-induced Hoxc gene collinearity in F9 cells.

Homeostatic balance of histone acetylation and deconstruction of repressive chromatin marker H3K9me3 during adipocyte differentiation of 3T3-L1 cells

  • Na, Han?Heom;Kim, Keun?Cheol
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1301-1308
    • /
    • 2018
  • Background Adipocyte differentiation is completed by changing gene expression. Chromatin is closely related to gene expression. Therefore, its structure might be changed for adipocyte differentiation. Mouse 3T3-L1 preadipocytes have been used as a cell model to study molecular mechanisms of adipogenesis. Objective To examine changes of chromatin modification and expression of histone modifying enzymes during adipocyte differentiation. Methods Microscopic analysis and Oil Red O staining were performed to determine distinct phenotype of adipocyte differentiation. RT-PCR and Western blot analysis were used to examine expression levels of histone modifying enzymes during adipocyte differentiation. Histone modifications were examined by immunostaining analysis. Results Expression levels of P300 and cbp were increased during adipocyte differentiation. However, acetylation of histones was not quantitatively changed postdifferentiation of 3T3-L1 cells compared to that at pre-differentiation. RT-PCR and Western blot analyses showed that expression levels of hdac2 and hdac3 were increased during adipocyte differentiation, suggesting histone acetylation at chromatin level was homeostatically controlled by increased expression of both HATs and HDACs. Tri-methylation level of H3K9 (H3K9me3), but not that of H3K27me3, was significantly decreased during adipocyte differentiation. Decreased expression of setdb1 was consistent with reduced pattern of H3K9me3. Knock-down of setdb1 induced adipocyte differentiation. This suggests that setdb1 is a key chromatin modifier that modulates repressive chromatin. Conclusion These results suggest that there exist extensive mechanisms of chromatin modifications for homeostatic balance of chromatin acetylation and deconstruction of repressive chromatin during adipocyte differentiation.

Alterations in Acetylation of Histone H4 Lysine 8 and Trimethylation of Lysine 20 Associated with Lytic Gene Promoters during Kaposi's Sarcoma-Associated Herpesvirus Reactivation

  • Lim, Sora;Cha, Seho;Jang, Jun Hyeong;Yang, Dahye;Choe, Joonho;Seo, Taegun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.189-196
    • /
    • 2017
  • Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with formation of Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Replication and transcription activator (RTA) genes are expressed upon reactivation of KSHV, which displays a biphasic life cycle consisting of latent and lytic replication phases. RTA protein expression results in KSHV genome amplification and successive viral lytic gene expression. Transcriptional activity of viral lytic genes is regulated through epigenetic modifications. In Raji cells latently infected with Epstein-Barr virus, various modifications, such as acetylation and methylation, have been identified at specific lysine residues in histone H4 during viral reactivation, supporting the theory that expression of specific lytic genes is controlled by histone modification processes. Data obtained from chromatin immunoprecipitation and quantitative real-time PCR analyses revealed alterations in the H4K8ac and H4K20me3 levels at lytic gene promoters during reactivation. Our results indicate that H4K20me3 is associated with the maintenance of latency, while H4K8ac contributes to KSHV reactivation in infected TREx BCBL-1 RTA cells.

The role of EZH1 and EZH2 in development and cancer

  • Soo Hyun, Lee;Yingying, Li;Hanbyeol, Kim;Seounghyun, Eum;Kyumin, Park;Chul-Hwan, Lee
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.595-601
    • /
    • 2022
  • Polycomb Repressive Complex 2 (PRC2) exhibits key roles in mammalian development through its temporospatial repression of gene expression. EZH1 or EZH2 is the catalytic subunit of PRC2 that mediates the mono-, di- and tri-methylation of histone H3 lysine 27 (H3K27me1/2/3), H3K27me2/me3 being a hallmark of facultative heterochromatin. PRC2 is a chromatin-modifying enzyme that is recruited to a limited number of "nucleation sites", spreads H3K27 methylation and fosters chromatin compaction. EZH1 and EZH2 exhibit differences in their expression patterns, levels of histone methyltransferase activity (HMT) in the context of PRC2, and DNA/nucleosome binding activity. This suggests that their roles in heterochromatin formation are disparate. Dysregulation of PRC2 activity leads to aberrant gene expression and is implicated in cancer and developmental diseases. In this review, we discuss the distinct function of PRC2/EZH1 and PRC2/EZH2 in the early and late developmental stages. We then discuss the cancers associated with PRC2/EZH1 and PRC2/EZH2.

Epigenetic role of nuclear S6K1 in early adipogenesis

  • Yi, Sang Ah;Han, Jihoon;Han, Jeung-Whan
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.401-402
    • /
    • 2016
  • S6K1 is a key regulator of cell growth, cell size, and metabolism. Although the role of cytosolic S6K1 in cellular processes is well established, the function of S6K1 in the nucleus remains poorly understood. Our recent study has revealed that S6K1 is translocated into the nucleus upon adipogenic stimulus where it directly binds to and phosphorylates H2B at serine 36. Such phosphorylation promotes EZH2 recruitment and subsequent histone H3K27 trimethylation on the promoter of its target genes including Wnt6, Wnt10a, and Wnt10b, leading to repression of their expression. S6K1-mediated suppression of Wnt genes facilitates adipogenic differentiation through the expression of adipogenic transcription factors PPARγ and Cebpa. White adipose tissues from S6K1-deficient mice consistently exhibit marked reduction in H2BS36 phosphorylation (H2BS36p) and H3K27 trimethylation (H3K27me3), leading to enhanced expression of Wnt genes. In addition, expression levels of H2BS36p and H3K27me3 are highly elevated in white adipose tissues from mice fed on high-fat diet or from obese humans. These findings describe a novel role of S6K1 as a transcriptional regulator controlling an epigenetic network initiated by phosphorylation of H2B and trimethylation of H3, thus shutting off Wnt gene expression in early adipogenesis.

Epigenetic regulation of long noncoding RNA UCA1 by SATB1 in breast cancer

  • Lee, Jong-Joo;Kim, Mikyoung;Kim, Hyoung-Pyo
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.578-583
    • /
    • 2016
  • Special AT-rich sequence binding protein 1 (SATB1) is a nuclear matrix-associated DNA-binding protein that functions as a chromatin organizer. SATB1 is highly expressed in aggressive breast cancer cells and promotes growth and metastasis by reprograming gene expression. Through genome-wide cross-examination of gene expression and histone methylation, we identified SATB1 target genes for which expression is associated with altered epigenetic marks. Among the identified genes, long noncoding RNA urothelial carcinoma-associated 1 (UCA1) was upregulated by SATB1 depletion. Upregulation of UCA1 coincided with increased H3K4 trimethylation (H3K4me3) levels and decreased H3K27 trimethylation (H3K27me3) levels. Our study showed that SATB1 binds to the upstream region of UCA1 in vivo, and that its promoter activity increases with SATB1 depletion. Furthermore, simultaneous depletion of SATB1 and UCA1 potentiated suppression of tumor growth and cell survival. Thus, SATB1 repressed the expression of oncogenic UCA1, suppressing growth and survival of breast cancer cells.

A demonstration of the H3 trimethylation ChIP-seq analysis of galline follicular mesenchymal cells and male germ cells

  • Chokeshaiusaha, Kaj;Puthier, Denis;Nguyen, Catherine;Sananmuang, Thanida
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.791-797
    • /
    • 2018
  • Objective: Trimethylation of histone 3 (H3) at 4th lysine N-termini (H3K4me3) in gene promoter region was the universal marker of active genes specific to cell lineage. On the contrary, coexistence of trimethylation at 27th lysine (H3K27me3) in the same loci-the bivalent H3K4m3/H3K27me3 was known to suspend the gene transcription in germ cells, and could also be inherited to the developed stem cell. In galline species, throughout example of H3K4m3 and H3K27me3 ChIP-seq analysis was still not provided. We therefore designed and demonstrated such procedures using ChIP-seq and mRNA-seq data of chicken follicular mesenchymal cells and male germ cells. Methods: Analytical workflow was designed and provided in this study. ChIP-seq and RNA-seq datasets of follicular mesenchymal cells and male germ cells were acquired and properly preprocessed. Peak calling by Model-based analysis of ChIP-seq 2 was performed to identify H3K4m3 or H3K27me3 enriched regions ($Fold-change{\geq}2$, $FDR{\leq}0.01$) in gene promoter regions. Integrative genomics viewer was utilized for cellular retinoic acid binding protein 1 (CRABP1), growth differentiation factor 10 (GDF10), and gremlin 1 (GREM1) gene explorations. Results: The acquired results indicated that follicular mesenchymal cells and germ cells shared several unique gene promoter regions enriched with H3K4me3 (5,704 peaks) and also unique regions of bivalent H3K4m3/H3K27me3 shared between all cell types and germ cells (1,909 peaks). Subsequent observation of follicular mesenchyme-specific genes-CRABP1, GDF10, and GREM1 correctly revealed vigorous transcriptions of these genes in follicular mesenchymal cells. As expected, bivalent H3K4m3/H3K27me3 pattern was manifested in gene promoter regions of germ cells, and thus suspended their transcriptions. Conclusion: According the results, an example of chicken H3K4m3/H3K27me3 ChIP-seq data analysis was successfully demonstrated in this study. Hopefully, the provided methodology should hereby be useful for galline ChIP-seq data analysis in the future.

Prognostic Significance of Overexpression of EZH2 and H3k27me3 Proteins in Gastric Cancer

  • He, Long-Jun;Cai, Mu-Yan;Xu, Guo-Liang;Li, Jian-Jun;Weng, Zi-Jin;Xu, Da-Zhi;Luo, Guang-Yu;Zhu, Sen-Lin;Xie, Dan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3173-3178
    • /
    • 2012
  • The enhancer of zeste homolog 2 (EZH2) methyl transferase and histone 3 lysine 27 (H3K27me3) protein can repress gene transcription, and their aberrant expression has been observed in various human cancers. This study determined their expression levels in gastric cancer tissues with reference to clinicopathological features and patient survival. We collected 117 gastric cancer and corresponding normal tissues for immunohistochemistry analysis. In gastric cancers, 82/117 (70.1%) were positive for EZH2 and 66/117 (56.4%) for H3K27me3 proteins in contrast to only 5.41% and 7.25% of normal gastric mucosa specimens, respectively. Kaplan-Meier survival data showed the average overall and disease-free survival of EZH2 high expression patients was 25.2 and 20.2 months, respectively, shorter than that with EZH2 low expression (40.5 and 35.9 months). The average overall survival and disease-free survival of high H3K27me3 expression patients was 23.4 and 17.4 months, shorter than without H3K27me3 expression (37.6 and 34.5 months). The average overall survival and disease-free survival of patients with both EZH2 and H3K27me3 expression was 18.8 and 12.9 months, respectively, shorter than that with either alone (34.7 and 31.2 months) or with low levels of both (43.9 and 39.9 months). Multivariate Cox regression analysis showed that H3K27me3 and EZH2 expression, tumor size differentiation and clinical stage were all independent prognostic factors for predicting patient survival. This study demonstrated that detection of both EZH2 and H3K27me3 proteins can predict poor survival of gastric cancer patients, superior to single protein detection. In addition, H3K27me3 and EZH2 protein expression could predict lymph node metastasis.

Purification of an Antibacterial Peptide from the Gills of the Pufferfish Takifugu pardalis (졸복의 아가미로부터 항균성 펩타이드의 정제)

  • Kim, Tae Young;Go, Hye-Jin;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.50-56
    • /
    • 2017
  • An antibacterial peptide was purified from an acidified gill extract of the pufferfish Takifugu pardalis. The acidified gill extract was put through a Sep-Pak C18 solid phase extraction cartridge using a stepwise gradient and divided into a flow-through (F.T.) and 60% methanol fraction (RM 60). Among the eluents, RM 60 had potent antibacterial activity against Bacillus subtilis KCTC 1021. RM 60 was partially purified on a cationic-exchange column (SP-5PW) by a linear gradient, and the antibacterial peptide was then further purified, using a series of cationic-exchange and $C_{18}$ reversed-phase HPLC columns. For characterization of the purified peptide, its molecular weight and amino acid sequence were analyzed by MALDI-TOF MS and Edman degradation. The molecular weight of the peptide was about 1171.6 Da. The amino acid sequence of the peptide was partially determined as: STKEKAPRKQ. A comparison of the N-terminal amino acid sequence of the purified peptide with that of other known polypeptides revealed high homology with the N-terminus of the histone H3 protein, which belongs to the histone H3 family. Thus, this peptide was designated as a puffer fish gill (PFG)-related antimicrobial peptide. This is the report to describe an antimicrobial function for the N-terminus of histone H3 of an animal species. The findings suggest that this peptide plays a significant role in the innate defense system of the pufferfish.