• 제목/요약/키워드: Histone

검색결과 545건 처리시간 0.02초

히스톤의 변이와 이와 관련된 기능적 측면 (Histone Modifications and It's Relation with Functional Aspects)

  • 강한철;김종범;노경희;김현욱;이경렬;김순희
    • Journal of Applied Biological Chemistry
    • /
    • 제57권4호
    • /
    • pp.379-386
    • /
    • 2014
  • 크로마틴은 DNA 구조를 다시 결정해주는 것과 같은 존재로 각종 신호에 폭넓게 반응한다. 크로마틴의 중요한 변화는 이러한 조절을 위한 히스톤의 변이이다. 이러한 변화들에 대한 지식이 점점 축적되고 있으며 이러한 반응의 복잡성이 점점 더 명확히 이해되고 있다. 히스톤의 변화가 대부분의 생명체의 반응에 있어서 DNA 의 발현 또는 억제를 통하여 중요한 역할을 한다는 사실이 명확해지고 있다. Nucleosome 의 표면은 각종 변화를 수용할 수 있다. 크로마틴 변화는 크로마틴 수축을 제거하거나 또는 비히스톤 단백질들을 불러 모으는 과정을 통하여 작용될 수 있다. 히스톤 변이를 매개로 하는 이러한 많은 조절들이 유전적으로 보존되어 전달되는 것으로 추측된다. 따라서 히스톤 변이는 동물, 식물 또는 미생물 세계의 기본적인 생물학적 반응과 상당히 밀접한 관계가 있다. 히스톤 변이가 제대로 이루어지지 않을 경우 크로모좀의 응축 또는 이완이 제대로 않되며 결국은 발생, 성숙, 생물체 방어 등 다방면에 대해 기능을 제대로 수행하지 못한다.

Effects of Trichostatin A on In vitro Development of Porcine Embryos Derived from Somatic Cell Nuclear Transfer

  • Jeong, Yeon Ik;Park, Chi Hun;Kim, Huen Suk;Jeong, Yeon Woo;Lee, Jong Yun;Park, Sun Woo;Lee, Se Yeong;Hyun, Sang Hwan;Kim, Yeun Wook;Shin, Taeyoung;Hwang, Woo Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권12호
    • /
    • pp.1680-1688
    • /
    • 2013
  • Many different approaches have been developed to improve the efficiency of animal cloning by somatic cell nuclear transfer (SCNT), one of which is to modify histone acetylation levels using histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA). In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from SCNT. We found that TSA treatment (50 nM) for 24 h following oocyte activation improved blastocyst formation rates (to 22.0%) compared with 8.9% in the non-treatment group and total cell number of the blastocysts for determining embryo quality also increased significantly ($88.9{\rightarrow}114.4$). Changes in histone acetylation levels as a result of TSA treatment were examined using indirect immunofluorescence and confocal microscopy scanning. Results showed that the histone acetylation level in TSA-treated embryos was higher than that in controls at both acetylated histone H3 lysine 9 (AcH3K9) and acetylated histone H4 lysine 12 (AcH4K12). Next, we compared the expression patterns of seven genes (OCT4, ID1; the pluripotent genes, H19, NNAT, PEG1; the imprinting genes, cytokeratin 8 and 18; the trophoblast marker genes). The SCNT blastocysts both with and without TSA treatment showed lower levels of OCT4, ID1, cytokeratin 8 and 18 than those of the in vivo blastocysts. In the case of the imprinting genes H19 and NNAT, except PEG1, the SCNT blastocysts both with and without TSA treatment showed higher levels than those of the in vivo blastocysts. Although the gene expression patterns between cloned blastocysts and their in vivo counterparts were different regardless of TSA treatment, it appears that several genes in NT blastocysts after TSA treatment showed a slight tendency toward expression patterns of in vivo blastocysts. Our results suggest that TSA treatment may improve preimplantation porcine embryo development following SCNT.

Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy

  • Eom, Gwang Hyeon;Kook, Hyun
    • BMB Reports
    • /
    • 제48권3호
    • /
    • pp.131-138
    • /
    • 2015
  • Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes: I, II, III, and IV. By structural similarities, class II HDACs are then subdivided into IIa and IIb. Among class I and II HDACs, HDAC2, 4, 5, and 9 have been reported to be involved in hypertrophic responses; HDAC4, 5, and 9 are negative regulators, whereas HDAC2 is a pro-hypertrophic mediator. The molecular function and regulation of class IIa HDACs depend largely on the phosphorylation-mediated cytosolic redistribution, whereas those of HDAC2 take place primarily in the nucleus. In response to stresses, posttranslational modification (PTM) processes, dynamic modifications after the translation of proteins, are involved in the regulation of the activities of those hypertrophy-related HDACs. In this article, we briefly review 1) the activation of HDAC2 in the development of cardiac hypertrophy and 2) the PTM of HDAC2 and its implications in the regulation of HDAC2 activity.

Methylation Changes of Lysine 9 of Histone H3 during Preimplantation Mouse Development

  • Yeo, Seungeun;Lee, Kyung-Kwang;Han, Yong-Mahn;Kang, Yong-Kook
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.423-428
    • /
    • 2005
  • Immediately after fertilization, a chromatin remodeling process in the oocyte cytoplasm extracts protamine molecules from the sperm-derived DNA and loads histones onto it. We examined how the histone H3-lysine 9 methylation system is established on the remodeled sperm chromatin in mice. We found that the paternal pronucleus was not stained for dimethylated H3-K9 (H3-$m_2K9$) during pronucleus development, while the maternal genome stained intensively. Such H3-$m_2K9$ asymmetry between the parental pronuclei was independent of $HP1{\beta}$ localization and, much like DNA methylation, was preserved to the two-cell stage when the nucleus appeared to be compartmentalized for H3-$m_2K9$. A conspicuous increase in H3-$m_2K9$ level was observed at the four-cell stage, and then the level was maintained without a visible change up to the blastocyst stage. The behavior of H3-$m_2K9$ was very similar, but not identical, to that of 5-methylcytosine during preimplantation development, suggesting that there is some connection between methylation of histone and of DNA in early mouse development.

Histone deacetylase family in balloon flower (Platycodon grandiflorus): Genome-wide identification and expression analysis under waterlogging stress

  • Min-A Ahn;Ga Hyeon Son;Tae Kyung Hyun
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.232-238
    • /
    • 2023
  • Histone deacetylases (HDACs) play a pivotal role in epigenetic regulation, affecting the structure of chromatin and gene expression across different stages of plant development and in response to environmental stresses. Although the role of HDACs in Arabidopsis and rice has been focused on in extensive research, the role of the HDAC gene family in various medicinal plants remains unclear. In the genome of the balloon flower (Platycodon grandiflorus), we identified 10 putative P. grandiflorus HDAC (PlgHDAC) proteins, which were classified into the three families (RPD3/HDA1, SIR2, and HD2 HDAC families) based on their domain compositions. These HDACs were predicted to be localized in various cellular compartments, indicating that they have diverse functions. In addition, the tissue-specific expression profiles of PlgHDACs differed across different plant tissues, indicating that they are involved in various developmental processes. Furthermore, the expression levels of all PlgHDACs were upregulated in leaves after waterlogging treatment, implying their potential role in coping with waterlogging-induced stress. Overall, our findings provide a comprehensive foundation for further research into the epigenetic regulation of PlgHDACs, and particularly, on their functions in response to environmental stresses such as waterlogging. Understanding the roles of these HDACs in the development and stress responses of balloon flower could have significant implications for improving crop yield and the quality of this important medicinal plant.

Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis

  • Li, Qiong;Li, Zhongwen;Lou, Aihua;Wang, Zhenyu;Zhang, Dequan;Shen, Qingwu W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권6호
    • /
    • pp.857-864
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK) activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. Methods: A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-${\beta}$-D-ribofuranoside (AICAR, a specific activator of AMPK), AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II) and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases). After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. Results: Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. Conclusion: Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.

Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis

  • Kim, Jun-Dae;Kim, Eunmi;Koun, Soonil;Ham, Hyung-Jin;Rhee, Myungchull;Kim, Myoung-Jin;Huh, Tae-Lin
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.580-586
    • /
    • 2015
  • While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc. Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development. As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish. These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.

가자(Terminalia chebula Retz.) 열매 메탄올 추출물의 Histone Acetyltransferase 활성 저해에 따른 항전립선암 효과 (The Inhibitory Effect on Androgen Receptor-Dependent Prostate Cancer Cell Growth by Anti-Histone Acetyltransferase Activity from Terminalia chebula Retz. Fruit Methanol Extract)

  • 이유현
    • 한국식품영양과학회지
    • /
    • 제42권10호
    • /
    • pp.1539-1543
    • /
    • 2013
  • 본 연구에서는 Terminalia chebula Retz.의 성숙열매인 가자 메탄올 추출물(TCME)을 이용하여 HAT 활성을 억제함으로써 AR의 아세틸화 감소를 유도하여 전립선암세포의 성장을 억제하였다. TCME의 처리는 HAT 활성을 100 ${\mu}g/mL$의 농도에서 50% 이상 저해하였으며, p300과 CBP 등의 특이적 HAT 단백질에서도 유의적인 저해활성을 보였다. TCME를 0~100 ${\mu}g/mL$로 안드로젠 수용체 의존적 전립선 암세포인 LNCaP에 처리한 결과, reporter assay에서 AR 매개 전사를 억제하고 AR target gene의 mRNA 발현을 억제하였다. 동일 농도에서 AR의 아세틸화가 감소한 결과를 보였으며, 결국 전립선암세포주의 성장억제를 유도하였다. 이같은 결과에서 가자 메탄올 추출물은 HAT 활성을 억제하며, AR의 아세틸화를 감소시킴으로써 효과적인 전립선암 치료소재로 개발될 수 있는 가능성이 있음을 제안한다.

Inhibition of Histone Deacetylase Activity Diminishes Pressure Overloaded Cardiac Hypertrophy in Mice

  • Hong, Yun-Kyung;Song, Jong-Wook;Lee, Sang-Kil;Lee, Young-Jeon;Rho, Gyu-Jin;Kim, Joo-Heon;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • 제35권2호
    • /
    • pp.159-165
    • /
    • 2011
  • To explore the role of histone deactylase (HDAC) activation in an in vivo model of hypertrophy, we studied the effects of Trichostatin A (TSA). TSA subjected to thoracic aortic banding (TAB)-induced pressure stress in mice. In histological observations, TAB in treated mice showed a significant hypertrophic response, whereas the sham operation remained nearly normal structure with partially blunted hypertrophy. TSA treatment had no effect (measured as HW/BW) on sham-operated animals. TAB animals treated with vehicle manifested a robust ~50% hypertrophic response (p<0.05 vs sham). TAB mice treated with 2 mg/kg/day TSA manifested a blunted growth responses, which was significantly diminished (p<0.05) compared with vehicle-treated TAB mice. TAB mice treated with a lower dose of TSA (0.5 mg/kg/day) manifested a similar blunting of hypertrophic growth (~25% increase in heart mass). Furthermore, to determine activity duration of TSA in vitro, 1 nM TSA was added to H9c2 cells. Histone acetylation was initiated at 4 hr after treatment, and it was peak up to 18 hr, then followed by significantly reduced to 30 hr. We also analyzed the expression of p53 following TSA treatment, wherein p53 expression was elevated at 4 hr, and it was maintained to 24 hr after treatment. ERK was activated at 8 hr, and maintained till 30 hr after treatment suggesting an intracellular signaling interaction between TSA and p53 expression Taken together, it is suggested that HDAC activation is required for pressure-overload growth of the heart. Eventually, these data suggest that histone acetylation may be a novel target for therapeutic intervention in pressure-overloaded cardiac hypertrophy.