Browse > Article
http://dx.doi.org/10.5483/BMBRep.2015.48.3.242

Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy  

Eom, Gwang Hyeon (Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School)
Kook, Hyun (Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School)
Publication Information
BMB Reports / v.48, no.3, 2015 , pp. 131-138 More about this Journal
Abstract
Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes: I, II, III, and IV. By structural similarities, class II HDACs are then subdivided into IIa and IIb. Among class I and II HDACs, HDAC2, 4, 5, and 9 have been reported to be involved in hypertrophic responses; HDAC4, 5, and 9 are negative regulators, whereas HDAC2 is a pro-hypertrophic mediator. The molecular function and regulation of class IIa HDACs depend largely on the phosphorylation-mediated cytosolic redistribution, whereas those of HDAC2 take place primarily in the nucleus. In response to stresses, posttranslational modification (PTM) processes, dynamic modifications after the translation of proteins, are involved in the regulation of the activities of those hypertrophy-related HDACs. In this article, we briefly review 1) the activation of HDAC2 in the development of cardiac hypertrophy and 2) the PTM of HDAC2 and its implications in the regulation of HDAC2 activity.
Keywords
Cardiac hypertrophy; Histone deacetylases; Histone deacetylase inhibitors; Posttranslational modifications;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Adenuga D and Rahman I (2010) Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes. Arch Biochem Biophys 498, 62-73   DOI   ScienceOn
2 Malhotra D, Thimmulappa RK, Mercado N et al (2011) Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Invest 121, 4289-4302   DOI   ScienceOn
3 Brandl A, Wagner T, Uhlig KM et al (2012) Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. J Mol Cell Biol 4, 284-293   DOI   ScienceOn
4 Galasinski SC, Resing KA, Goodrich JA and Ahn NG (2002) Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 277, 19618-19626   DOI   ScienceOn
5 Adenuga D, Yao H, March TH, Seagrave J and Rahman I (2009) Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. Am J Respir Cell Mol Biol 40, 464-473   DOI   ScienceOn
6 Liao X, Haldar SM, Lu Y et al (2010) Kruppel-like factor 4 regulates pressure-induced cardiac hypertrophy. J Mol Cell Cardiol 49, 334-338   DOI   ScienceOn
7 Colussi C, Mozzetta C, Gurtner A et al (2008) HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci U S A 105, 19183-19187   DOI   ScienceOn
8 Zhu W, Trivedi CM, Zhou D, Yuan L, Lu MM and Epstein JA (2009) Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res 105, 1240-1247   DOI   ScienceOn
9 Kee HJ and Kook H (2009) Kruppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J Mol Cell Cardiol 47, 770-780   DOI   ScienceOn
10 Levy L, Wei Y, Labalette C et al (2004) Acetylation of beta-catenin by p300 regulates beta-catenin-Tcf4 interaction. Mol Cell Biol 24, 3404-3414   DOI
11 Chen LF, Mu Y and Greene WC (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 21, 6539-6548   DOI   ScienceOn
12 Ito A, Kawaguchi Y, Lai CH et al (2002) MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21, 6236-6245   DOI   ScienceOn
13 Ito K, Yamamura S, Essilfie-Quaye S et al (2006) Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 203, 7-13   DOI   ScienceOn
14 Watamoto K, Towatari M, Ozawa Y et al (2003) Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22, 9176-9184   DOI   ScienceOn
15 Eom GH, Cho YK, Ko JH et al (2011) Casein kinase-2alpha1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation 123, 2392-2403   DOI   ScienceOn
16 Kee HJ, Sohn IS, Nam KI et al (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113, 51-59   DOI   ScienceOn
17 Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840   DOI   ScienceOn
18 Nott A, Watson PM, Robinson JD, Crepaldi L and Riccio A (2008) S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455, 411-415   DOI   ScienceOn
19 Kook H, Lepore JJ, Gitler AD et al (2003) Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 112, 863-871   DOI   ScienceOn
20 Kong Y, Tannous P, Lu G et al (2006) Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113, 2579-2588   DOI   ScienceOn
21 Kee HJ, Eom GH, Joung H et al (2008) Activation of histone deacetylase 2 by inducible heat shock protein 70 in cardiac hypertrophy. Circ Res 103, 1259-1269   DOI   ScienceOn
22 Gallo P, Latronico MV, Gallo P et al (2008) Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res 80, 416-424   DOI   ScienceOn
23 Trivedi CM, Luo Y, Yin Z et al (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13, 324-331   DOI   ScienceOn
24 Trivedi CM, Zhu W, Wang Q et al (2010) Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev Cell 19, 450-459   DOI   ScienceOn
25 Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1, 287-299   DOI
26 Monteforte N, Napolitano C and Priori SG (2012) Genetics and arrhythmias: diagnostic and prognostic applications. Rev Esp Cardiol (Engl Ed) 65, 278-286   DOI
27 Ismat FA, Zhang M, Kook H et al (2005) Homeobox protein Hop functions in the adult cardiac conduction system. Circ Res 96, 898-903   DOI   ScienceOn
28 Kee HJ, Kwon JS, Shin S, Ahn Y, Jeong MH and Kook H (2011) Trichostatin A prevents neointimal hyperplasia via activation of Kruppel like factor 4. Vascul Pharmacol 55, 127-134   DOI   ScienceOn
29 Cincarova L, Zdrahal Z and Fajkus J (2013) New perspectives of valproic acid in clinical practice. Expert Opin Investig Drugs 22, 1535-1547   DOI   ScienceOn
30 Liu F, Levin MD, Petrenko NB et al (2008) Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin. J Mol Cell Cardiol 45, 715-723   DOI   ScienceOn
31 Zhao TC, Cheng G, Zhang LX, Tseng YT and Padbury JF (2007) Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovasc Res 76, 473-481   DOI   ScienceOn
32 Lee TM, Lin MS and Chang NC (2007) Inhibition of histone deacetylase on ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol 293, H968-977   DOI   ScienceOn
33 Cho YK, Eom GH, Kee HJ et al (2010) Sodium valproate, a histone deacetylase inhibitor, but not captopril, prevents right ventricular hypertrophy in rats. Circ J 74, 760-770   DOI   ScienceOn
34 Granger A, Abdullah I, Huebner F et al (2008) Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 22, 3549-3560   DOI   ScienceOn
35 McKinsey TA, Zhang CL and Olson EN (2000) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 97, 14400-14405   DOI   ScienceOn
36 Lee HA, Lee DY, Cho HM, Kim SY, Iwasaki Y and Kim IK (2013) Histone deacetylase inhibition attenuates transcriptional activity of mineralocorticoid receptor through its acetylation and prevents development of hypertension. Circ Res 112, 1004-1012   DOI   ScienceOn
37 Jones P, Altamura S, De Francesco R et al (2008) Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg Med Chem Lett 18, 1814-1819   DOI   ScienceOn
38 Eom GH, Nam YS, Oh JG et al (2014) Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res 114, 1133-1143   DOI   ScienceOn
39 Nebbioso A, Manzo F, Miceli M et al (2009) Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Rep 10, 776-782   DOI   ScienceOn
40 Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA and Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24, 8467-8476   DOI   ScienceOn
41 Montgomery RL, Davis CA, Potthoff MJ et al (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21, 1790-1802   DOI   ScienceOn
42 Vega RB, Harrison BC, Meadows E et al (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24, 8374-8385   DOI   ScienceOn
43 Maudsley S, Pierce KL, Zamah AM et al (2000) The beta(2)-adrenergic receptor mediates extracellular signalregulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem 275, 9572-9580   DOI   ScienceOn
44 Hubbert C, Guardiola A, Shao R et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458   DOI   ScienceOn
45 Azechi T, Kanehira D, Kobayashi T et al (2013) Trichostatin A, an HDAC class I/II inhibitor, promotes pi-induced vascular calcification via up-regulation of the expression of alkaline phosphatase. J Atheroscler Thromb 20, 538-547   DOI
46 Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA and Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479-488   DOI   ScienceOn
47 Park CW and Ryu KY (2014) Cellular ubiquitin pool dynamics and homeostasis. BMB Rep 47, 475-482   DOI   ScienceOn
48 Santos-Rosa H, Valls E, Kouzarides T and Martinez-Balbas M (2003) Mechanisms of P/CAF auto-acetylation. Nucleic Acids Res 31, 4285-4292   DOI   ScienceOn
49 Gu W and Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606   DOI   ScienceOn
50 Evans PM, Zhang W, Chen X, Yang J, Bhakat KK and Liu C (2007) Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem 282, 33994-34002   DOI   ScienceOn
51 Driessen HP, de Jong WW, Tesser GI and Bloemendal H (1985) The mechanism of N-terminal acetylation of proteins. CRC Crit Rev Biochem 18, 281-325   DOI
52 Eom GH and Kook H (2014) Posttranslational modifications of histone deacetylases: implications for cardiovascular diseases. Pharmacol Ther 143, 168-180   DOI   ScienceOn
53 Laherty CD, Yang WM, Sun JM, Davie JR, Seto E and Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349-356   DOI   ScienceOn
54 Nagy L, Kao HY, Chakravarti D et al (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373-380   DOI   ScienceOn
55 Fischle W, Dequiedt F, Hendzel MJ et al (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9, 45-57   DOI   ScienceOn
56 Frey N and Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65, 45-79   DOI   ScienceOn
57 Hill JA and Olson EN (2008) Cardiac plasticity. N Engl J Med 358, 1370-1380   DOI   ScienceOn
58 Hunter DJ and Reddy KS (2013) Noncommunicable diseases. N Engl J Med 369, 1336-1343   DOI   ScienceOn
59 Beg AA, Finco TS, Nantermet PV and Baldwin AS Jr (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol Cell Biol 13, 3301-3310   DOI
60 Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R and Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605   DOI   ScienceOn