• Title/Summary/Keyword: Hill shade

Search Result 14, Processing Time 0.031 seconds

A Study on the Three Dimensional Road Design Technique Based on GIS Technique (GIS를 이용한 3차원도로시뮬레이션에 관한 연구)

  • Gwon, Hyeok Chun;Lee, Byeong Geol
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.489-495
    • /
    • 2004
  • The purpose of this research is to apply GIS(Geographic Information System) for the road simulation and find some benefits analysis for the design processes. The northern Jeju island was selected as a case study. The 1/5,000 digital map and GIS technique were used for optimum road design of the island based on Arc View software. Using this software we can get an overlay map by combination of hill shade map, slope map, aspect map, and building buffer map. Based on the overlay map, we designed the optimum road line and performed three dimensional simulation. From the results, we found that the developed three dimensional road simulation technique using GIS technique that was very useful tool to estimate the reasonable road design before the real road construction works.

Extraction of Road Surface Freezing Section using GIS (GIS를 이용한 도로의 노면결빙구간 추출)

  • Choi, Byoung-Gil;Kim, Joong-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.19-25
    • /
    • 2005
  • This study suggests a method for securing road safety by extracting the expected surface freezing section in planning a route using GIS. When planning a road construction in a mountainous area it is possible to confront surface freezing especially in the wintertime. In addition, it is required assessment data of surface freezing rates in the case of turnkey inspections of newly constructed or expanded roads. Consequently, an analysis method that can quantitatively estimate the surface freezing section and sunshine influence on each section of a road is needed. We can extract the expected surface freezing section which amounted to around 29km of the Donghae highway, with such techniques as three-dimensional modeling, sunshine simulation geographical database construction and spatial analysis using the overlay function of the GIS spatial analysis. This study can be used as a method to assess advance safety which has a direct influence on planning the blueprint that should be approved by a policy maker after efficiently understanding the expected surface freezing section in accordance with hill shade.

  • PDF

A Study On The Optimum Road Design in Jeju Island Using Digital Photogrammetry and GSIS (수치사진측량과 GSIS를 이용한 최적노선선정에 관한 연구)

  • 권혁춘;이병걸
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.519-522
    • /
    • 2004
  • The purpose of this research is to design a road using digital photogrammatry method to generate DEM(digital elevation model) and digital ortho image based on GSIS which was applied to the road simulation. The example study area was the suburbs of Jeju city. To this study, 1/5,000 digital map and GSIS technique were used for optimum road design of the island based on Arc View software. Using this software we can Set an overlay map by combination of hill shade map, slope map, aspect map, and building buffer map. Based on this overlap map, we designed the best road line and along this line we performed three dimensional road simulation using Microstation CAD and Inroads road design programs. From the results, we found that the DEM and digital ortho image acquired from stereoairphoto using digital photogrammatry was satisfied for choosing the best roadline and the developed three dimensional road simulation technique using GSIS technique was very useful to estimate the reasonable road design before the real road construction works.

  • PDF

The Preliminary Study for the Applied to Geological Survey using the Landsat TM Satellite Image of the Tanggung Area of Southern Part of the Bandung, Indonesia

  • Kim, I. J.;Lee, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.135-137
    • /
    • 2003
  • The purpose of this preliminary study is the applied to geology using the Landsat TM satellite image of the Tanggung area of southern part of the Bandung, Indonesia to provide basic information for geological survey. For this, topography, geology and satellite image were constructed to spatial database. Digital elevation, slope, aspect, curvature, hill shade of topography were calculated from the topographic database and lithology was imported from the geological database. Lineament, lineament density, and NDVI were extracted the Landsat TM satellite image. The results showed the close relationship between geology and terrain and satellite image. Each sedimentary rock seldom corresponds with geology and analyses of topography but as a whole for sedimentary rocks coincide with them. Tuff and volcanic breccia in the volcanic rocks correspond with the result of terrain analyses. Talus deposits is well matched with the analyses of opography/satellite image.

  • PDF

Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm (음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지)

  • Hyeong-Gyu Kim;Joongbin Lim;Kyoung-Min Kim;Myoungsoo Won;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.637-654
    • /
    • 2023
  • In recent years, the number of users has been increasing with the rapid development of earth observation satellites. In response, the Committee on Earth Observation Satellites (CEOS) has been striving to provide user-friendly satellite images by introducing the concept of Analysis Ready Data (ARD) and defining its requirements as CEOS ARD for Land (CARD4L). In ARD, a mask called an Unusable Data Mask (UDM), identifying unnecessary pixels for land analysis, should be provided with a satellite image. UDMs include clouds, cloud shadows, terrain shadows, etc. Terrain shadows are generated in mountainous terrain with large terrain relief, and these areas cause errors in analysis due to their low radiation intensity. previous research on terrain shadow detection focused on detecting terrain shadow pixels to correct terrain shadows. However, this should be replaced by the terrain correction method. Therefore, there is a need to expand the purpose of terrain shadow detection. In this study, to utilize CAS500-4 for forest and agriculture analysis, we extended the scope of the terrain shadow detection to shaded areas. This paper aims to analyze the potential for terrain shadow detection to make a terrain shadow mask for South and North Korea. To detect terrain shadows, we used a Hill-shade algorithm that utilizes the position of the sun and a surface's derivatives, such as slope and aspect. Using RapidEye images with a spatial resolution of 5 meters and Sentinel-2 images with a spatial resolution of 10 meters over the Korean Peninsula, the optimal threshold for shadow determination was confirmed by comparing them with the ground truth. The optimal threshold was used to perform terrain shadow detection, and the results were analyzed. As a qualitative result, it was confirmed that the shape was similar to the ground truth as a whole. In addition, it was confirmed that most of the F1 scores were between 0.8 and 0.94 for all images tested. Based on the results of this study, it was confirmed that automatic terrain shadow detection was well performed throughout the Korean Peninsula.

Real-Time Terrain Visualization with Hierarchical Structure (실시간 시각화를 위한 계층 구조 구축 기법 개발)

  • Park, Chan Su;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.311-318
    • /
    • 2009
  • Interactive terrain visualization is an important research area with applications in GIS, games, virtual reality, scientific visualization and flight simulators, besides having military use. This is a complex and challenging problem considering that some applications require precise visualizations of huge data sets at real-time rates. In general, the size of data sets makes rendering at real-time difficult since the terrain data cannot fit entirely in memory. In this paper, we suggest the effective Real-time LOD(level-of-detail) algorithm for displaying the huge terrain data and processing mass geometry. We used a hierarchy structure with $4{\times}4$ and $2{\times}2$ tiles for real-time rendering of mass volume DEM which acquired from Digital map, LiDAR, DTM and DSM. Moreover, texture mapping is performed to visualize realistically while displaying height data of normalized Giga Byte level with user oriented terrain information and creating hill shade map using height data to hierarchy tile structure of file type. Large volume of terrain data was transformed to LOD data for real time visualization. This paper show the new LOD algorithm for seamless visualization, high quality, minimize the data loss and maximize the frame speed.

A Study On Choosing The Most Suitable Roadline Using Digital Photogrammetry and GIS in Mountain Area (산악지역에서의 수치사진측량에 의한 DEM추출과 GIS를 이용한 3차원 도로시뮬레이션에 관한 연구)

  • Quan He-Chun;Lee Byung-Gul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • The purpose of the paper is to make the three dimensional road simulation model based on the digital photogrammetry and GIS techniques in the middle of Halla mountain of Jeju island. To do this, we generate DEM (digital elevation model) and digital ortho image using GIS tools such as Arc View, Imagestation and MGE module. In GIS, the overlay map schemes combining of the hill shade, the land slope and aspect were applied. Based on the processes, we can build the best three dimensional road line along the hill side of the island. From the results, we also found that the derived DEM from digital ortho image and the GIS technique were very useful for choosing the best three dimensional road design before the real road construction works in Jeju island.

Analysis of Climate Variability under Various Scenarios for Future Urban Growth in Seoul Metropolitan Area (SMA), Korea (미래 도시성장 시나리오에 따른 수도권 기후변화 예측 변동성 분석)

  • Kim, Hyun-Su;Jeong, Ju-Hee;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.261-272
    • /
    • 2012
  • In this study, climate variability was predicted by the Weather Research and Forecasting (WRF) model under two different scenarios (current trends scenario; SC1 and managed scenario; SC2) for future urban growth over the Seoul metropolitan area (SMA). We used the urban growth model, SLEUTH (Slope, Land-use, Excluded, Urban, Transportation, Hill-Shade) to predict the future urban growth in SMA. As a result, the difference of urban ratio between two scenarios was the maximum up to 2.2% during 50 years (2000~2050). Also, the results of SLEUTH like this were adjusted in the Weather Research and Forecasting (WRF) model to analysis the difference of the future climate for the future urbanization effect. By scenarios of urban growth, we knew that the significant differences of surface temperature with a maximum of about 4 K and PBL height with a maximum of about 200 m appeared locally in newly urbanized area. However, wind speeds are not sensitive for the future urban growth in SMA. These results show that we need to consider the future land-use changes or future urban extension in the study for the prediction of future climate changes.

Ginger Cultivation Under Multipurpose Tree Species in the Hill Forest (방글라데시 경사지 산림토양의 경제적 이용을 위한 생강 재배기술 개발)

  • Aslam Ali, M.;Jamaluddin, M.;Mujibur Rahman, G.M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.218-221
    • /
    • 2005
  • The present study was investigated in the Chittagong hill forest of Bangladesh to assess the feasibility of ginger cultivation under multipurpose forest and fruit tree species. There were three treatments such as i) ginger grown under open field condition, ie. full sunlight (T1), ii) ginger grown under Gamar tree (spacing of $90{\times}90cm$ (T2) and iii) ginger grown under guava tree (spacing $180{\times}180cm$) tree (T3). The experiment was laid out in randomized block design (RBD) and each treatment was replicated three times. From data it was observed that some morphological parameters of ginger such as plant height, number of leaves per plant, leaf length and leaf breadth were higher in the treatments T2 and T3 as compared to the treatment T1. A positive and linear relationship was observed between the weight of rhizome and yield of ginger which caused the highest yield of ginger ($23.63Mg\;ha^{-1}$) under guava tree species at partial shaded condition in the T3 treatment ($180{\times}180cm$), whereas the lowest yield ($15.64Mg\;ha^{-1}$) was recorded in the T2 treatment when ginger was cultivated under Gamar tree species at closer spacing ($90{\times}90cm$). Therefore, it was revealed that partial shaded condition favoured the optimum growth and yield of ginger, whereas the dense shade from intensively planted tree species badly affected the dry matter production and yield of ginger.

Relationship between terrain/satellite image and geology of the southern part of the Bandung, Indonesia (인도네시아 반둥 남부 지역에서의 지형/위성영상 분석결과와 지질과의 상관성 연구)

  • 김인준;이사로
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.133-139
    • /
    • 2003
  • The purpose of this study is the analyses of the relationship between geology and terrain/satellite image in the southern part of the Bandung, Indonesia to provide basic information fur geological survey. For this, topography, geology and satellite image were constructed to spatial database. Digital elevation, slope, aspect, curvature, hill shade of topography were calculated from the topographic database and lithology was imported from the geologi-cal database. Lineament, lineament density, and NDVI were extracted the Landsat TM satellite image. The results showed the close relationship between geology and terrain and satellited image. Each sedimentary rocks seldom correspond with geology and analyses of topography but as a whole fur sedimentary rocks coincide with them. Tuff and volcanic breccia in the volcanic rocks correspond with the result of terrain analyses. Talus deposit is well matched with the analyses of topography/satellite image.