• Title/Summary/Keyword: Highly efficient energy

Search Result 337, Processing Time 0.029 seconds

A Design and Analysis of Pressure Predictive Model for Oscillating Water Column Wave Energy Converters Based on Machine Learning (진동수주 파력발전장치를 위한 머신러닝 기반 압력 예측모델 설계 및 분석)

  • Seo, Dong-Woo;Huh, Taesang;Kim, Myungil;Oh, Jae-Won;Cho, Su-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.672-682
    • /
    • 2020
  • The Korea Nowadays, which is research on digital twin technology for efficient operation in various industrial/manufacturing sites, is being actively conducted, and gradual depletion of fossil fuels and environmental pollution issues require new renewable/eco-friendly power generation methods, such as wave power plants. In wave power generation, however, which generates electricity from the energy of waves, it is very important to understand and predict the amount of power generation and operational efficiency factors, such as breakdown, because these are closely related by wave energy with high variability. Therefore, it is necessary to derive a meaningful correlation between highly volatile data, such as wave height data and sensor data in an oscillating water column (OWC) chamber. Secondly, the methodological study, which can predict the desired information, should be conducted by learning the prediction situation with the extracted data based on the derived correlation. This study designed a workflow-based training model using a machine learning framework to predict the pressure of the OWC. In addition, the validity of the pressure prediction analysis was verified through a verification and evaluation dataset using an IoT sensor data to enable smart operation and maintenance with the digital twin of the wave generation system.

The Newest Technology Development and Commercialization Status of Coal Gasification (석탄가스화 기술의 최신 개발 동향 및 상업화 현황)

  • Lee, Jin-Wook;Yun, Yongseung;Kang, Won-seok
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.150-163
    • /
    • 2015
  • Gasification technology is one of the representative next-generation fossil fuel utilization technologies, converting low grade fossil fuels such as coal, heavy residue oil, pet-coke into highly clean and efficient energy sources. Accordingly, related market demand for gasification technology is ever increasing steadily and rapidly. A few years ago, conventional pulverized coal utilization technology had an edge over the gasification technology but the most significant technical barrier of limited capacity and availability has been largely overcome nowadays. Futhermore, it will be more competitive in the future with the advancement of related technologies such as gas turbine, ion transfer membrane and so on. China has recently completed a commercialization-capable large-scale coal gasification technology for its domestic market expansion and foreign export, rapidly becoming a newcomer in the field and competing with existing US and EU technical leadership at comparable terms. Techno-economic aspect deserves intensive attention and steady R&D efforts need to continue in organized, considering that gasification technology is quite attractive combined with $CO_2$ capture process and coal to SNG plant is economically viable in Korea where natural gas is very expensive. In the present paper, recent technology development and commercialization trend of many leading companies with coal gasification expertise have been reviewed with significant portion of literature cited from the recently held '2014 Gasification Technology Conference'.

Development of Visible-light Responsive $TiO_2$ Thin Film Photocatalysts by Magnetron Sputtering Method and Their Applications as Green Chemistry Materials

  • Matsuoka, Masaya
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.3.1-3.1
    • /
    • 2010
  • Water splitting reaction using photocatalysts is of great interest in the utilization of solar energy [1]. In the present work, visible light-responsive $TiO_2$ thin films (Vis-$TiO_2$) were prepared by a radio frequency magnetron sputtering (RF-MS) deposition method and applied for the separate evolution of $H_2$ and $O_2$ from water as well as the photofuel cell. Special attentions will be focused on the effect of HF treatment of Vis-$TiO_2$ thin films on their photocatalytic activities. Vis-$TiO_2$ thin films were prepared by an RF-MS method using a calcined $TiO_2$ plate and Ar as the sputtering gas. The Vis-$TiO_2$ thin films were then deposited on the Ti foil substrate with the substrate temperature at 873 K (Vis-$TiO_2$/Ti). Vis-$TiO_2$/Ti thin films were immersed in a 0.045 vol% HF solution at room temperature. The effect of HF treatments on the activity of Vis-$TiO_2$/Ti thin films for the photocatalytic water splitting reaction have been investigated. Vis-$TiO_2$/Ti thin films treated with HF solution (HF-Vis-$TiO_2$/Ti) exhibited remarkable enhancement in the photocatalytic activity for $H_2$ evolution from a methanol aqueous solution as well as in the photoelectrochemical performance under visible light irradiation as compared with the untreated Vis-$TiO_2$/Ti thin films. Moreover, Pt-loaded HF-Vis-$TiO_2$/Ti thin films act as efficient and stable photocatalysts for the separate evolution of $H_2$ and $O_2$ from water under visible light irradiation in the presence of chemical bias. Thus, HF treatment was found to be an effective way to improve the photocatalytic activity of Vis-$TiO_2$/Ti thin films. Furthermore, unique separate type photofuel cell was fabricated using a Vis-$TiO_2$ thin film as an electrode, which can generate electrical power under solar light irradiation by using various kinds of biomass derivatives as fuel. It was found that the introduction of an iodine ($I^-/{I_3}^-$) redox solution at the cathode side enables the development of a highly efficient photofuel cell which can utilize a cost-efficient carbon electrode as an alternative to the Pt cathode.

  • PDF

Development and Assessment of Crashworthy Composite Subfloor for Rotorcrafts (회전익 항공기용 복합재 내추락 하부동체 구조 개발 및 검증)

  • Park, Ill Kyung;Lim, Joo Sup;Kim, Sung Joon;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.18-31
    • /
    • 2018
  • Rotorcrafts have more severe crashworthiness conditions than fixed wing aircraft owing to VTOL and hovering. Recently, with the increasing demand for highly efficient transportation system, application of composite materials to aircraft structures is increasing. However, due to the characteristics of composite materials that are susceptible to impact and crash, demand to prove the crashworthiness of composite structures is also increasing. The purpose of present study is to derive the structural concept of composite subfloor for rotorcrafts and verify it. In order to design a crashworthy composite subfloor, the conceptual design of the testbed helicopter for the demonstration and the derivation of energy absorbing requirement were carried out, and the composite energy absorber was designed and verified. Finally, the testbed for the demonstration of a crashworthy composite structure was fabricated, and performed free drop test. It was confirmed that the test results meet the criteria for ensuring occupant survivability.

Effect of Iron Activators on the Persulfate Oxidation of Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Soils (다환방향족 탄화수소(PAHs) 오염토양의 과황산 산화 시 철 활성화제의 영향)

  • Choi, Jiyeon;Park, Jungdo;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.62-73
    • /
    • 2020
  • PAHs commonly found in industrial sites such as manufactured gas plants (MGP) are potentially toxic, mutagenic and carcinogenic, and thus require immediate remediation. In-situ chemical oxidation (ISCO) is known as a highly efficient technology for soil and groundwater remediation. Among the several types of oxidants utilized in ISCO, persulfate has gained significant attention in recent years. Peroxydisulfate ion (S2O82-) is a strong oxidant with very high redox potential (E0 = 2.01 V). When mixed with Fe2+, it is capable of forming the sulfate radical (SO4) that has an even higher redox potential (E0 = 2.6 V). In this study, the influence of various iron activators on the persulfate oxidation of PAHs in contaminated soils was investigated. Several iron sources such as ferrous sulfate (FeSO4), ferrous sulfide (FeS) and zero-valent iron (Fe(0)) were tested as a persulfate activator. Acenaphthene (ANE), dibenzofuran (DBF) and fluorene (FLE) were selected as model compounds because they were the dominant PAHs found in the field-contaminated soil collected from a MGP site. Oxidation kinetics of these PAHs in an artificially contaminated soil and the PAH-contaminated field soil were investigated. For all soils, Fe(0) was the most effective iron activator. The maximum PAHs removal rate in Fe(0)-mediated reactions was 92.7% for ANE, 83.0% for FLE, and 59.3% for DBF in the artificially contaminated soil, while the removal rate of total PAHs was 72.7% in the field-contaminated soil. To promote the iron activator effect, the effects of hydroxylamine as a reducing agent on reduction of Fe3+ to Fe2+, and EDTA and pyrophosphate as chelating agents on iron stabilization in persulfate oxidation were also investigated. As hydroxylamine and chelating agents (EDTA, pyrophosphate) dosage increased, the individual PAH removal rate in the artificially contaminated soil and the total PAHs removal rate in the field-contaminated soil increased.

Analysis of Oil Performance by Different Type of Engine Oil In the Field (필드조건, 엔진오일의 종류에 따른 오일성능 분석)

  • Kim, Young Whan;Song, Jun Hee;Kim, Han Joo
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.131-136
    • /
    • 2017
  • Automobile engine oil is the most important lubricant for operating as the engine is started. Recently, manufacturers of the automotive industry and lubricants are considerably improving the quality of oil with additive to extend change cycle period. Most customers are recommended genuine oil among different types from shop expert. Through this report we suggest another reference point for consumer to pick highly efficient lubricant. This report is investigated oil compounds to compare with 6 different automotive considering actual running condition for 7 months. we conducted experiment from physical and chemical perspectives. In the field, through various experiments oil compounds between mineral oil and synthetic oil are largely distinguished in oxidation, viscosity, fluid and TBN. These are influenced by engine part wear as piston, bearing etc. Comparing various investigation with different oil the performance of synthetic oil is shown better condition in flash point, oxidation stability and also found less in change pollutant iron, Al compounds. Additives of oil show clear difference Ca level in detergent-dispersant both mineral oil and synthetic oil. And Zn in extreme pressure additives and P in Lubricity improver make no difference to both.

Research Trends of Polybenzimidazole-based Membranes for Hydrogen Purification Applications (수소 분리 응용을 위한 폴리벤즈이미다졸 기반 분리막의 연구 동향)

  • Kim, Ji Hyeon;Kim, Kihyun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.453-466
    • /
    • 2020
  • As the demand for eco-friendly energy increases to overcome the energy shortage and environmental pollution crisis, hydrogen economy has been proposed as a potential solution. Accordingly, an economical and efficient hydrogen production is considered to be an essential industrial process. Research on applying hydrogen separation membranes for H2/CO2 separation to the production of highly concentrated hydrogen by purifying H2 and capturing CO2 simultaneously from synthetic gas produced by gasification is in progress nowadays. In high temperature environments, the membrane separation process using glassy polymeric membrane with H2 selectivity has the potential for CO2 capture performance, and is an energy and cost effective system since polybenzimicazole (PBI)-based separators show excellent chemical and mechanical stability under high-temperature operation conditions. Thus, the development of high-performance PBI hydrogen separators has been rapidly progressing in recent years. This overview focuses on the recent developments of PBI-based membranes including structure modified, cross-linked, blended and carbonized membranes for applications to the industrial hydrogen separation process.

Formation of Layered Bi5Ti3FeO15 Perovskite in Bi2O3-TiO2-Fe2O3 Containing System

  • Borse, Pramod H.;Yoon, Sang-Su;Jang, Jum-Suk;Lee, Jae-Sung;Hong, Tae-Eun;Jeong, Euh-Duck;Won, Mi-Sook;Jung, Ok-Sang;Shim, Yoon-Bo;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3011-3015
    • /
    • 2009
  • Structural and thermo-analytical studies were carried out to understand the phase formation kinetics of the single phase $Bi_5Ti_3FeO_{15}$ (BTFO) nanocrystals in $Bi_2O_3-Fe_2O_3-TiO_2$, during the polymerized complex (PC) synthesis method. The crystallization of Aurivillius phase $Bi_5Ti_3FeO_{15}$ layered perovskite was found to be initiated and achieved under the temperature conditions in the range of ${\sim}$800 to 1050$^{\circ}C$. The activation energy for grain growth of $Bi_5Ti_3FeO_{15}$ nanocrystals (NCs) was very low in case of NCs formed by PC (2.61 kJ/mol) than that formed by the solid state reaction (SSR) method (10.9 kJ/mol). The energy involved in the phase transformation of Aurivillius phase $Bi_5Ti_3FeO_{15}$ from $Bi_2O_3-Fe_2O_3-TiO_2$ system was ${\sim}$ 69.8 kJ/mol. The formation kinetics study of $Bi_5Ti_3FeO_{15}$ synthesized by SSR and PC methods would not only render a large impact in the nanocrystalline material development but also in achieving highly efficient visible photocatalysts.

Analysis of Two-Way Fluid-Structure Interaction and Local Material Properties of Brazed Joints for Estimation of Mechanical Integrity (관형 열교환기의 기계적 건전성 확보를 위한 유체-고체 연성해석과 브레이징 접합부의 국부적 물성분포 분석)

  • Kang, Seok Hoon;Park, Sang Hu;Min, June Kee;Jeong, Ho Sung;Son, Chang Min;Ha, Man-Young;Cho, JongRae;Kim, Hyun Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Recent years have witnessed a strong need for eco-friendly and energy-efficient systems owing to global environmental problems. A heat exchanger is a well-known mechanical rig that has long been used in many energy systems. The use of a heat exchanger in an airplane engine has been attempted. In this case, the heat exchanger should be redesigned to be compact, lightweight, and highly reliable, and the issue of mechanical integrity gains importance. Therefore, in this study, we proposed a method for evaluating the mechanical integrity of a tube-type heat exchanger. A U-shaped single tube was used as an example, and its behavior and stress distribution were studied using fluid-structure interaction (FSI) analysis.

NOC Architecture Design Methodology (NOC 구조 설계 방법론)

  • Agarwal Ankur;Pandya A. S.;Asaduzzaman Abu;Lho Young-Uhg
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • Multiprocessor system on chip (MPSoC) platforms has set a new innovative trend for the SoC design. Quality of service parameters and performance matrix are leading to the adoption of new design methodology for SoC, which will incorporate highly scalable, reusable, predictable, cost and energy efficient platform not only for underlying communication backbone but also for the entire system architecture of NOC. Like the layered architecture for the communication backbone of NOC, we have proposed the entire system architecture for NOC to be a seven layered architecture in itself. Such a platform can separate the domain specific issues which will model concurrency along with the synchronization issues more effectively. For such a layered architecture, model of computation will provide a framework to that can model concurrency and synchronization issues which are natural for any application. Therefore it becomes extremely important to use a right computation model in a specific NOC region.