• Title/Summary/Keyword: Higher-order plate theory

Search Result 223, Processing Time 0.033 seconds

A mechanical behavior of composite plates using a simple three variable refined plate theory

  • Bakoura, Ahmed;Djedid, Ibrahim Klouche;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.617-625
    • /
    • 2022
  • A novel three variable refined plate theory (TVRPT) is developed in this article for laminated composite plates for the first time. The theory takes into account the nonlinear variation of transverse shear deformations, and satisfies the boundary conditions of zero traction on the plate surfaces without considering the "shear correction factor". The important characteristic of this new kinematic is that the unknowns numbers is only 3 as is employed in "classical plate theory" (CPT). The numerical results of the current theory are compared with 3D-elasticity solutions and the calculations of "first order theories" and other higher order models found in the literature.

A Higher-Order Theory for Laminated Composite Plates (적층복합평판을 위한 고차해석이론)

  • 신용석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.65-76
    • /
    • 1994
  • A higher-oder laminated plate theory including the effect of transverse shear deformation is developed to calculate the gross response and the detailed stress distribution. The theory satisfies the continuity condition of transverse shear stress, and accounts for parabolic variation of the transverse shear stresses through the thickness of each layer. Exact closed-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and a simple higher-order theory solutions. The results of the present work exhibit acceptable accuracy when compared to the three-dimensional elasticity solutions.

Dynamic Characteristics of Composite Plates Based On a Higher Order Theory Under Low-Velocity Impact (저속 충격시 고차이론을 이용한 복합 재료 판의 동적 특성)

  • 심동진;김지환
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.132-138
    • /
    • 1998
  • The dynamic response of symmetric cross-ply and angle-ply composite laminated plates under impact loads is investigated using a higher order shear deformation theory. A modified Hertz law is used to predict the impact loads and a four node finite element is used to model the plate. By using a higer order shear deformation theory, the out-of-plane shear stresses, which can be a crucial factor in the failure of composite plates, are determined with significant accuracy. This is accomplished by using a stress recovery technique using the in-plane stresses. The results compared with previous investigations showed good agreement. It can be seen that this method of analyzing impact problems is more efficient than current three dimensional methods in terms of time and expense.

  • PDF

A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.707-727
    • /
    • 2016
  • In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear deformation plate theory with an inverse cotangential function in which shear deformation effect was involved without the need for shear correction factors. The material properties of FG nanoplate are considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka model. On the basis of non-classical higher order plate model and Eringen's nonlocal elasticity theory, the small size influence was captured. Numerical examples show the importance of non-uniform thermal loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on vibrational responses of size-dependent FG nanoplates.

Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory

  • Arani, A. Ghorbanpour;Cheraghbak, A.;Kolahchi, R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.489-505
    • /
    • 2016
  • Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. In order to present a realistic model, the structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are incorporated based on Eringen'n nonlocal theory. Equations of motion are derived from the Hamilton's principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG plate, structural damping and boundary conditions on the dynamic instability of system. The results are compared with those of first order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling responses of system.

Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

  • Alile, Mohsen Rezvani;Foyouzat, Mohammad Ali;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.757-770
    • /
    • 2022
  • In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for plates of higher thicknesses. Moreover, it is shown that CPT is unable to properly capture the variation of the plate thickness, thereby diminishing the accuracy as the thickness increases. The outcomes also indicate that the presence of a foundation contributes more to the dynamic response of thin plates in comparison to moderately thick plates. Furthermore, the findings suggest that the performance of the moving force approach for a moderately thick plate, in contrast to a thin plate, appears to be acceptable and it even provides a much better estimation in the presence of a foundation.

Free vibration analysis of power-law and sigmoidal sandwich FG plates using refined zigzag theory

  • Aman Garg;Simmi Gupta;Hanuman D. Chalak;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi;Li Li;A.M. Zenkour
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.43-65
    • /
    • 2023
  • Free vibration analysis of power law and sigmoidal sandwich plates made up of functionally graded materials (FGMs) has been carried out using finite element based higher-order zigzag theory. The present model satisfies all-important conditions such as transverse shear stress-free conditions at the plate's top and bottom surface along with continuity condition for transverse stresses at the interface. A Nine-noded C0 finite element having eleven degrees of freedom per node is used during the study. The present model is free from the requirement of any penalty function or post-processing technique and hence is computationally efficient. The present model's effectiveness is demonstrated by comparing the present results with available results in the literature. Several new results have been proposed in the present work, which will serve as a benchmark for future works. It has been observed that the material variation law, power-law exponent, skew angle, and boundary condition of the plate widely determines the free vibration behavior of sandwich functionally graded (FG) plate.

On the stability of isotropic and composite thick plates

  • Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.551-568
    • /
    • 2019
  • This proposed project presents the bi-axial and uni-axial stability behavior of laminated composite plates based on an original three variable "refined" plate theory. The important "novelty" of this theory is that besides the inclusion of a cubic distribution of transverse shear deformations across the thickness of the structure, it treats only three variables such as conventional plate theory (CPT) instead five as in the well-known theory of "first shear deformation" (FSDT) and theory of "higher order shear deformation" (HSDT). A "shear correction coefficient" is therefore not employed in the current formulation. The computed results are compared with those of the CPT, FSDT and exact 3D elasticity theory. Good agreement is demonstrated and proved for the present results with those of "HSDT" and elasticity theory.

On vibration and flutter of shear and normal deformable functionally graded reinforced composite plates

  • Abdollahi, Mahdieh;Saidi, Ali Reza;Bahaadini, Reza
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.437-452
    • /
    • 2022
  • For the first time, the higher-order shear and normal deformable plate theory (HOSNDPT) is used for the vibration and flutter analyses of the multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) plates under supersonic airflow. For modeling the supersonic airflow, the linear piston theory is adopted. In HOSNDPT, Legendre polynomials are used to approximate the components of the displacement field in the thickness direction. So, all stress and strain components are encountered. Either uniform or three kinds of non-uniform distribution of graphene platelets (GPLs) into polymer matrix are considered. The Young modulus of the FG-GPLRC plate is estimated by the modified Halpin-Tsai model, while the Poisson ratio and mass density are determined by the rule of mixtures. The Hamilton's principle is used to obtain the governing equations of motion and the associated boundary conditions of the plate. For solving the plate's equations of motion, the Galerkin approach is applied. A comparison for the natural frequencies obtained based on the present investigation and those of three-dimensional elasticity theory shows a very good agreement. The flutter boundaries for FG-GPLRC plates based on HOSNDPT are described and the effects of GPL distribution patterns, the geometrical parameters and the weight fraction of GPLs on the flutter frequencies and flutter aerodynamic pressure of the plate are studied in detail. The obtained results show that by increasing 0.5% of GPLs into polymer matrix, the flutter aerodynamic pressure increases approximately 117%, 145%, 166% and 196% for FG-O, FG-A, UD and FG-X distribution patterns, respectively.

Bending analysis of an imperfect advanced composite plates resting on the elastic foundations

  • Daouadji, Tahar Hassaine;Benferhat, Rabia;Adim, Belkacem
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.269-283
    • /
    • 2016
  • A two new high-order shear deformation theory for bending analysis is presented for a simply supported, functionally graded plate with porosities resting on an elastic foundation. This porosities may possibly occur inside the functionally graded materials (FGMs) during their fabrication, while material properties varying to a simple power-law distribution along the thickness direction. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theories presented are variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. It is established that the volume fraction of porosity significantly affect the mechanical behavior of thick function ally graded plates. The validity of the two new theories is shown by comparing the present results with other higher-order theories. The influence of material parameter, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM plate are represented by numerical examples.