Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.4.551

On the stability of isotropic and composite thick plates  

Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
Tounsi, Abdelouahed (Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals)
Publication Information
Steel and Composite Structures / v.33, no.4, 2019 , pp. 551-568 More about this Journal
Abstract
This proposed project presents the bi-axial and uni-axial stability behavior of laminated composite plates based on an original three variable "refined" plate theory. The important "novelty" of this theory is that besides the inclusion of a cubic distribution of transverse shear deformations across the thickness of the structure, it treats only three variables such as conventional plate theory (CPT) instead five as in the well-known theory of "first shear deformation" (FSDT) and theory of "higher order shear deformation" (HSDT). A "shear correction coefficient" is therefore not employed in the current formulation. The computed results are compared with those of the CPT, FSDT and exact 3D elasticity theory. Good agreement is demonstrated and proved for the present results with those of "HSDT" and elasticity theory.
Keywords
stability analysis; isotropic; laminated composite plate;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 Demasi, L. (2009b), "${\infty}6$ mixed plate theories based on the generalized unified formulation. Part II: Layerwise theories", Compos. Struct., 87, 12-22. https://doi.org/10.1016/j.compstruct.2008.07.012   DOI
2 Demasi, L. (2009c), "${\infty}6$ mixed plate theories based on the generalized unified formulation. Part III: Advanced mixed high order shear deformation theories", Compos. Struct., 87, 183-194. https://doi.org/10.1016/j.compstruct.2008.07.011   DOI
3 Demasi, L. (2009d), "${\infty}6$ Mixed plate theories based on the generalized unified formulation. Part IV: Zig-zag theories", Compos. Struct., 87, 195-205. https://doi.org/10.1016/j.compstruct.2008.07.010   DOI
4 Demasi, L. (2009e), "${\infty}6$ mixed plate theories based on the generalized unified formulation. Part V: Results", Compos. Struct., 87, 1-16. https://doi.org/10.1016/j.compstruct.2008.07.009   DOI
5 Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002   DOI
6 Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38.   DOI
7 Nali, P., Carrera, E. and Lecca, S. (2011), "Assessments of refined theories for buckling analysis of laminated plates", Compos. Struct., 93, 456-464. https://doi.org/10.1016/j.compstruct.2010.08.035   DOI
8 Noor, A.K. (1975), "Stability of multilayered composite plates", Fib. Sci. Tech., 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6   DOI
9 Noor, A.K. and Burton, W.S. (1989), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42, 1-13. https://doi.org/10.1115/1.3152418   DOI
10 Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", Int. J. Appl. Computat. Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9   DOI
11 Panda, S.K. and Ramachandra, L.S. (2010), "Buckling of rectangular plates with various boundary conditions loaded by non-uniform in-plane loads", Int. J. Mech. Sci., 52, 819-828. https://doi.org/10.1016/j.ijmecsci.2010.01.009   DOI
12 Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004   DOI
13 Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and nonuniform porosities", Coupl. Syst. Mech., Int. J., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247
14 Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y   DOI
15 Verma, V.K. and Singh, B.N. (2009), "Thermal buckling of laminated composite plates with random geometric and material properties", Int. J. Struct. Stab. Dyn., 9(2), 187-211. https://doi.org/10.1142/S0219455409002990   DOI
16 Wang, C.M. and Lee, K.H. (1998), "Buckling load relationship between Reddy and Kirchhoff circular plates", J. Franklin Institute, 335B(6), 989-995. https://doi.org/10.1016/S0016-0032(97)00047-1   DOI
17 Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40,141. https://doi.org/10.1007/s40430-018-1065-0   DOI
18 Fadoun, O.O., Borokinni, A.S., Layeni, O.P. and Akinola, A.P. (2017), "Dynamics analysis of a transversely isotropic nonclassical thin plate", Wind Struct., Int. J., 25(1), 25-38. https://doi.org/10.12989/was.2017.25.1.025
19 Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), "Analysis of composite plates by trigonometric shear deformation theory and multiquadrics", Comput. Struct., 83, 2225-2237. https://doi.org/10.1016/j.compstruc.2005.04.002   DOI
20 Panda, S.K. and Singh, B.N. (2010a), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1   DOI
21 Xiang, Y. and Wang, C.M. (2002), "Exact buckling and vibration solutions for stepped rectangular plates", J. Sound Vib., 250(3), 503-517. https://doi.org/10.1006/jsvi.2001.3922   DOI
22 Wang, C.M. and Reddy, J.N. (1997), "Buckling load relationship between Reddy and Kirchhoff plates of polygonal shape with simply supported edges", Mech. Res. Commun., 24(1), 103-108. https://doi.org/10.1016/S0093-6413(96)00084-5   DOI
23 Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier, Oxford, UK.
24 Wanji, C. and Zhen, W. (2008), "A selective review on recent development of displacement-based laminated plate theories", Rec. Pat. Mech. Eng., 1, 29-44.   DOI
25 Xiang, S., Wang, K., Ai, Y., Sha, Y. and Shi, H. (2009), "Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories", Compos. Struct., 91, 31-37. https://doi.org/10.1016/j.compstruct.2009.04.029   DOI
26 Zhong, H. and Gu, C. (2007), "Buckling of symmetrical cross-ply composite rectangular plates under a linearly varying in-plane load", Compos. Struct., 80, 42-48. https://doi.org/10.1016/j.compstruct.2006.02.030   DOI
27 Panda, S.K. and Singh, B.N. (2010b), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(4), 757-769. https://doi.org/10.1243/09544062JMES1809   DOI
28 Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N., Soares, C.M.M. and Liew, K.M. (2011), "Buckling and vibration analysis of isotropic and laminated plates by radial basis functions", Compos. Part B., 42, 592-606. https://doi.org/10.1016/j.compositesb.2010.08.001   DOI
29 Fiedler, L., Lacarbonara, W. and Vestroni, F. (2010), "A generalized higher-order theory for buckling of thick multilayered composite plates with normal and transverse shear strains", Compos. Struct., 92, 3011-3019. https://doi.org/10.1016/j.compstruct.2010.05.017   DOI
30 Ghugal, Y.M. and Shimpi, R.P. (2002), "A review of refined shear deformation theories for isotropic and anisotropic laminated plates", J. Reinf. Plast. Compos., 21, 775-813. https://doi.org/10.1177/073168402128988481   DOI
31 Panda, S.K. and Singh, B.N. (2011), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM", Finite Elem. Anal. Des., 47(4), 378-386. https://doi.org/10.1016/j.finel.2010.12.008   DOI
32 Panda, S.K. and Singh, B.N. (2013a), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007   DOI
33 Panda, S.K. and Singh, B.N. (2013b), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097   DOI
34 Huang, Y.Q. and Li, Q.S. (2004), "Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method", Comput. Meth. App. Mech. Eng., 193, 3471-3492. https://doi.org/10.1016/j.cma.2003.12.039   DOI
35 Gilat, R., Williams, T.O. and Aboudi, J. (2001), "Buckling of composite plates by global-local plate theory", Compos. Part B., 32, 229-236. https://doi.org/10.1016/S1359-8368(00)00059-7   DOI
36 Hadji, L. and Zouatnia, N. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., Int. J., 16(2),177-183. https://doi.org/10.12989/eas.2019.16.2.177
37 Hashemia, A.S., Khorshidia, K. and Amabilib, M. (2008), "Exact solution for linear buckling of rectangular Mindlin plates", J. Sound Vib., 315, 318-342. https://doi.org/10.1016/j.jsv.2008.01.059   DOI
38 Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039   DOI
39 Panda, S.K. and Singh, B.N. (2013d), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibers", Nonlinear Dyn., 74(1-2), 395-418. https://doi.org/10.1007/s11071-013-0978-5   DOI
40 Panda, S.K. and Singh, B.N. (2013c), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM", Mech. Based Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330   DOI
41 Panda, S.K., Mahapatra, T.R. and Kar, V.R. (2017), "Nonlinear finite element solution of post-buckling responses of FGM panel structure under elevated thermal load and TD and TID properties", MATEC Web of Conferences, 109, 05005. http://hdl.handle.net/2080/2625
42 Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151
43 Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. App. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719   DOI
44 Reddy, J.N. and Arciniega, R.A. (2004), "Shear deformation plate and shell theories: From Stavsky to present", Mech. Adv. Mater. Struct., 11(6), 535-582. https://doi.org/10.1080/15376490490452777   DOI
45 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77.
46 Ruocco, E. and Fraldi, M. (2012), "An analytical model for the buckling of plates under mixed boundary conditions", Eng. Struct., 38, 78-88. https://doi.org/10.1016/j.engstruct.2011.12.049   DOI
47 Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, Int. J., 24(6), December 2019. [In press]
48 Jafari, A.A. and Eftekhari, S.A. (2011), "An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates", App. Math. Comput., 218, 2670-2692. https://doi.org/10.1016/j.amc.2011.08.008   DOI
49 Jones, R.M. (1975), Mechanics of Composite Materials, McGraw Hill Kogakusha, Ltd, Tokyo, Japan.
50 Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014   DOI
51 Karami, B., Shahsavari, D. and Janghorban, M. (2018), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mat. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143   DOI
52 Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Thermal Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118   DOI
53 Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
54 Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbucklingbehaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125   DOI
55 Katariya, P. and Panda, S.K. (2014), "Thermo-mechanical stability analysis of composite cylindrical panels", Proceedings of ASME 2013 Gas Turbine India Conference. https://doi.org/10.1115/GTINDIA2013-3651
56 Sayyad, A.A. and Ghugal, Y.M. (2014), "On the buckling of isotropic, transversely isotropic and laminated composite rectangular plates", Int. J. Struct. Stabil. Dyn., 14(7), 1450020. https://doi.org/10.1142/S0219455414500205   DOI
57 Ruocco, E., Minutolo, V. and Ciaramella, S. (2011), "A generalized analytical approach for the buckling analysis of thin rectangular plates with arbitrary boundary conditions", Int. J. Struct. Stab. Dyn., 11(1), 1-21. https://doi.org/10.1142/S0219455411003963
58 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., Int. J., 35(5), December10 2019. [In press]
59 Sayyad, A.S. and Ghugal, Y.M. (2013), "Effect of stress concentration on laminated plates", J. Mech., 29, 241-252. https://doi.org/10.1017/jmech.2012.131   DOI
60 Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445   DOI
61 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
62 Akavci, S.S. (2007), "Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation", J. Reinf. Plast. Compos., 26(18), 1907-1919. https://doi.org/10.1177/0731684407081766   DOI
63 Katariya, P. and Panda, S. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202   DOI
64 Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017a), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595
65 Akbas, Ş.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupl. Syst. Mech., Int. J., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259
66 Akhavan, H., Hashemi, S.H., Damavanditaher, H.R., Alibeigloo, A. and Vahabi, S. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis", Comput. Mat. Sci., 44, 968-978. https://doi.org/10.1016/j.commatsci.2008.07.004   DOI
67 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
68 Arya, H., Shimpi, R.P. and Naik, N.K. (2002), "A zig-zag model for laminated composite beams", Compos. Struct., 56, 21-24. https://doi.org/10.1016/S0263-8223(01)00178-7   DOI
69 Azhari, M. and Kassaei, K. (2004), "Local buckling analysis of thick anisotropic plates using complex finite strip method", Iran. J. Sci. Tech. Trans. B., 28, 21-30.
70 Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017b), "Nonlinear thermal bucklingbehaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., Int. J., 6(4), 349-361. https://doi.org/10.12989/amr.2017.6.4.349
71 Katariya, P.V., Das, A. and Panda, S.K. (2018), "Buckling analysis of SMA bonded sandwich structure - using FEM", IOP Conference Series: Materials Science and Engineering, 338(1), 012035. https://doi.org/10.1088/1757-899X/338/1/012035   DOI
72 Kheirikhah, M.M., Khalili, S.M.R. and Fard, K.M. (2012), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", Eur. J. Mech. A/Solids, 31, 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003   DOI
73 Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023   DOI
74 Kreja, I. (2011), "A literature review on computational models for laminated composite and sandwich panels", Cent. Eur. J. Eng., 1(1), 59-80. https://doi.org/10.2478/s13531-011-0005-x   DOI
75 Kuo, S.Y. and Shiau, L.C. (2009), "Buckling and vibration of composite laminated plates with variable fiber spacing", Compos. Struct., 90, 196-200. https://doi.org/10.1016/j.compstruct.2009.02.013   DOI
76 Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., Int. J., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123   DOI
77 Barton, O. (2008), "Buckling of simply supported rectangular plates under combined bending and compression using eigen sensitivity analysis", Thin-Wall. Struct., 46, 435-441. https://doi.org/10.1016/j.tws.2007.07.021   DOI
78 Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., Int. J., 33(5). [In press]
79 Levy, M. (1877), "Memoire sur la theorie des plaques elastique planes", J. Pure Appl. Math., 30, 219-306.
80 Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., Int. J., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761
81 Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
82 Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., Int. J., 21(6),1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287   DOI
83 Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", App. Mech. Rev., 56(3), 287-308. https://doi.org/10.1115/1.1557614   DOI
84 Liu, F.L. (2001), "Differential quadrature element method for the buckling analysis of rectangular Mindlin plates having discontinuous", Int. J. Solids Struct., 38, 2305-2321. https://doi.org/10.1016/S0020-7683(00)00120-7   DOI
85 Liew, K.M. and Chen, X.L. (2004), "Buckling of rectangular Mindlin plates subjected to partial in-plane edge loads using the radial point interpolation method", Int. J. Solids Struct., 41, 1677-1695. https://doi.org/10.1016/j.ijsolstr.2003.10.022   DOI
86 Liew, K.M. and Huang, Y.Q. (2003), "Bending and buckling of thick symmetric rectangular laminates using the moving leastsquares differential quadrature method", Int. J. Mech. Sci., 45, 95-114. https://doi.org/10.1016/S0020-7403(03)00037-7   DOI
87 Liew, K.M., Wang, J., Ng, T.Y. and Tan, M.J. (2004), "Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method", J. Sound Vib., 276, 997-1017. https://doi.org/10.1016/j.jsv.2003.08.026   DOI
88 Liu, Y.G. and Pavlovic, M.N. (2008), "A generalized analytical approach to the buckling of simply-supported rectangular plates under arbitrary loads", Eng. Struct., 30, 1346-1359. https://doi.org/10.1016/j.engstruct.2007.07.025   DOI
89 Liu, J., Cheng, Y.S. and Li, R.F. (2010), "A semi-analytical method for bending, buckling and free vibration analyses of sandwich panels with square-honeycomb cores", Int. J. Struct. Stab. Dyn., 10(1), 127-151. https://doi.org/10.1142/S0219455410003361   DOI
90 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 179-188. https://doi.org/10.12989/anr.2019.7.3.179
91 Shimpi, R.P., Arya, H. and Naik, N.K. (2003), "A higher order displacement model for the plate analysis", J. Reinf. Plast. Compos., 22(18), 1667-1688. https://doi.org/10.1177/073168403027618   DOI
92 Shahadat, M.R.B., Alam, M.F., Mandal, M.N.A. and Ali, M.M. (2018), "Thermal transportation behaviour prediction of defective graphene sheet at various temperature: A Molecular Dynamics Study", Am. J. Nanomater., 6(1), 34-40.
93 Shaikh, A.E.R. and Ganeshan, R. (2012), "Buckling analysis of tapered composite plates using Ritz method based on first-order shear deformation theory", Int. J. Struct. Stab. Dyn., 12(4), 1-21. https://doi.org/10.1142/S0219455412500307
94 Shimpi, R.P. and Ghugal, Y.M. (2002), "A layerwise shear deformation theory for two layered cross-ply laminated plates", Mech. Adv. Mater. Struct., 7(4), 331-353. https://doi.org/10.1080/10759410050201690   DOI
95 Shukla, K.K., Nath, Y., Kreuzer, E. and Kumar, K.V.S. (2005), "Buckling of laminated composite rectangular plates", ASCE J. Aero. Eng., 18(4), 215-223. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:4(215)   DOI
96 Darvizeh, M., Darvizeh, A., Ansari, R. and Sharma, C.B. (2004), "Buckling analysis of generally laminated composite plates (generalized differential quadrature rules versus Rayleigh-Ritz method", Compos. Struct., 63, 69-74. https://doi.org/10.1016/S0263-8223(03)00133-8   DOI
97 Demasi, L. (2008), "${\infty}3$ Hierarchy plate theories for thick and thin composite plates: The generalized unified formulation", Compos. Struct., 84, 256-270. https://doi.org/10.1016/j.compstruct.2007.08.004   DOI
98 Demasi, L. (2009a), "${\infty}6$ mixed plate theories based on the generalized unified formulation. Part I: Governing equations", Compos. Struct., 87, 1-11. https://doi.org/10.1016/j.compstruct.2008.07.013   DOI
99 Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T. and Vu, T. (2012), "Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method", Compos. Struct., 94, 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012   DOI
100 Shufrin, I., Rabinovitch, O. and Eisenberger, M. (2008), "Buckling of symmetrically laminated rectangular plates with general boundary conditions-A semi analytical approach", Compos. Struct., 82, 521-531. https://doi.org/10.1016/j.compstruct.2007.02.003   DOI
101 Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94, 195-220. https://doi.org/10.1007/BF01176650   DOI
102 Stein, M. and Bains, N.J.C. (1990), "Post buckling behavior of longitudinally compressed orthotropic plates with transverse shearing flexibility", AIAA J., 28, 892-895. https://doi.org/10.2514/3.25135   DOI