• Title/Summary/Keyword: Higher Order Time Frequency

Search Result 338, Processing Time 0.03 seconds

A Time-Domain Approach for the Second-Order Diffraction Problem Around Circular Cylinders in Random Waves

  • YONGHWAN KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2001
  • This study concentrates on the second-order diffraction problem around circular cylinders in multi-frequency waves. The method of solution is a time-domain Rankine panel method which adopts a higher-order approximation for the velocity potential and wave elevation. In the present study, the multiple second-order quadratic transfer functions are extracted from the second-order time signal generated in random waves, and the comparison with other bench-mark test results shows a good agreement. This approach is directly applicable to prediction of nonlinear forces on offshore structures in random ocean.

  • PDF

Source Localization of Single Impact Based on Higher Order Time Frequency (고차-시간 주파수 기술을 이용한 평판에서의 충격 위치추적)

  • Moon, Yoo-Sung;Lee, Sang-Kwon;Yang, Hong-Goon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.129-136
    • /
    • 2011
  • The aim of this paper is to present the method of identifying the impact location on the plate. This basic research has the future purpose to achieve the human-interaction technology based on the signal processing, piezoelectric materials, and wave propagation. The present work concerning the location identification of a single impact on the plate simulated the waveform numerically generated by impact force and applied the SWFOM(sliced Wigner higher fourth order moment) to the waveform to get the arrival time differences due to impact force between three sensors attached to the plate. The simulated signal is useful to get the information for time interval for the only direct wave. This information is used the source localization by using experimental work. The measured signal is also used for source localization of a single impact based on the higher order time frequency as a novel work.

Investigation on Flashover Development Mechanism of Polymeric Insulators by Time Frequency Analysis

  • Muniraj, C.;Krishnamoorthi, K.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1503-1511
    • /
    • 2013
  • This paper deals with the analysis of leakage current characteristics of silicone rubber insulator in order to develop a new condition monitoring tool to identify the flashover of outdoor insulators. In this work, laboratory based pollution performance tests are carried out on silicone rubber insulator under ac voltage at different pollution levels and relative humidity conditions with sodium chloride (NaCl) as a contaminant. Min-Norm spectral analysis is adopted to calculate the higher order harmonics and Signal Noise Ratio (SNR). Choi-Williams Distribution (CWD) function is employed to understand the time frequency characteristics of the leakage current signal. Reported results on silicone rubber insulators show that the flashover development process of outdoor polymer insulators could be identified from the higher order harmonics and signal noise ratio values of leakage current signals.

Frequency/Amplitude Separation Algorithm Using the Higher Order Differential Energy Operator and Its Application (고차의 미분에너지함수를 이용한 주파수 및 진폭성분 추출 알고리즘과 응용)

  • Iem, Byeong-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1498-1502
    • /
    • 2007
  • There have been many different definitions of energy functions as the second statistics of a signal. In this paper, using the higher order differential energy function, we propose an algorithm separating the amplitude and frequency components in a discrete sinusoidal signal. The proposed amplitude and frequency estimation methods have less computational requirement than the existing methods. It also shows large computational advantage over the root mean square (RMS) calculation of a signal. The proposed methods can be used in the detection of abnormal events in signals on the power line. Computer simulations show that proposed frequency estimation method can detect the presence of voltage increase or decrease for a short period of time. Also, the proposed estimation methods have been compared with existing methods in terms of estimation error variance.

Solution of the Radiation Problem by the B-Spline Higher Order Kelvin Panel Method for an Oscillating Cylinder Advancing in the Free Surface

  • Hong, Do-Chun;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.34-53
    • /
    • 2002
  • Numerical solution of the forward-speed radiation problem for a half-immersed cylinder advancing in regular waves is presented by making use of the improved Green integral equation in the frequency domain. The B-spline higher order panel method is employed stance the potential and its derivative are unknown at the same time. The present numerical solution of the improved Green integral equation by the B-spline higher order Kelvin panel method is shown to be free of irregular frequencies which are present in the Green integral equation using the forward-speed Kelvin-type Green function.

LOW REGULARITY SOLUTIONS TO HIGHER-ORDER HARTREE-FOCK EQUATIONS WITH UNIFORM BOUNDS

  • Changhun Yang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • In this paper, we consider the higher-order HartreeFock equations. The higher-order linear Schrödinger equation was introduced in [5] as the formal finite Taylor expansion of the pseudorelativistic linear Schrödinger equation. In [13], the authors established global-in-time Strichartz estimates for the linear higher-order equations which hold uniformly in the speed of light c ≥ 1 and as their applications they proved the convergence of higher-order Hartree-Fock equations to the corresponding pseudo-relativistic equation on arbitrary time interval as c goes to infinity when the Taylor expansion order is odd. To achieve this, they not only showed the existence of solutions in L2 space but also proved that the solutions stay bounded uniformly in c. We address the remaining question on the convergence of higherorder Hartree-Fock equations when the Taylor expansion order is even. The distinguished feature from the odd case is that the group velocity of phase function would be vanishing when the size of frequency is comparable to c. Owing to this property, the kinetic energy of solutions is not coercive and only weaker Strichartz estimates compared to the odd case were obtained in [13]. Thus, we only manage to establish the existence of local solutions in Hs space for s > $\frac{1}{3}$ on a finite time interval [-T, T], however, the time interval does not depend on c and the solutions are bounded uniformly in c. In addition, we provide the convergence result of higher-order Hartree-Fock equations to the pseudo-relativistic equation with the same convergence rate as the odd case, which holds on [-T, T].

Dispersion Analysis of Higher-Order Modes for Planar Transmission Lines Using the 2-Dimensional Finite-Difference Time-Domain Method (2차원 유한차분-시간영역 방법을 이용한 평면형 전송선로의 고차 모드 분산 특성 해석)

  • 전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.847-854
    • /
    • 1999
  • In this paper, we have analysed frequency-dispersion characteristics of higher-order modes for uniform planar transmission lines, using the 2-dimensional finite-difference time-domain method. The method presented in this paper uses both informations of amplitude and phase of the electromagnetic spectrum to determine resonant frequencies, while methods previously reported use the magnitude only. This algorithm is very useful when a resonant mode has a relatively small magnitude, where the identification of the resonant mode is quite difficult. Numerical results show that a strip line supports few higher-order modes within the frequency range of 20 GHz, but there occur many higher-order modes in the structure of grounded coplanar waveguide, where resonant frequencies of the first higher-order mode is very close to those of the fundamental mode and there occur lots of very adjacent higher-order modes. As in this example, for the analysis of planar transmission lines which support many resonant modes very close each other, the method presented in this paper can be applied very efficiently.

  • PDF

Caption Extraction in News Video Sequence using Frequency Characteristic

  • Youglae Bae;Chun, Byung-Tae;Seyoon Jeong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.835-838
    • /
    • 2000
  • Popular methods for extracting a text region in video images are in general based on analysis of a whole image such as merge and split method, and comparison of two frames. Thus, they take long computing time due to the use of a whole image. Therefore, this paper suggests the faster method of extracting a text region without processing a whole image. The proposed method uses line sampling methods, FFT and neural networks in order to extract texts in real time. In general, text areas are found in the higher frequency domain, thus, can be characterized using FFT The candidate text areas can be thus found by applying the higher frequency characteristics to neural network. Therefore, the final text area is extracted by verifying the candidate areas. Experimental results show a perfect candidate extraction rate and about 92% text extraction rate. The strength of the proposed algorithm is its simplicity, real-time processing by not processing the entire image, and fast skipping of the images that do not contain a text.

  • PDF

A Study on Design and Fabrication of Complex Type EM Wave Absorber with Super Wide-band Characteristics

  • Kim Dae-Hun;Kim Dong-Il;Choi Chang-Mook;Son Jun-Young
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • In order to construct an Anechoic Chamber satisfying international standards for EMI testing, it has been recognized that the absorption characteristics of the EM wave absorber must be higher than 20 dB over the frequency band from 30 MHz to 18 GHz. In this paper, an EM wave absorber with super wide-band frequency characteristics was proposed and designed in order to satisfy the above requirements by using the Equivalent Material Constant Method(EMCM) and Finite Difference Time Domain(FDTD). The proposed absorber is to attach a pyramidal absorber onto a hemisphere-type absorber on a cutting cone-shaped ferrite. As a result, the proposed absorber has absorption characteristics higher than 20 dB over the frequency band from 30 MHz to more than 20 GHz.

A Study on the Characteristics of Observation seen in the Process of Perception and Recognition of Space (공간의 지각과 인지과정에 나타난 주시메커니즘 특성 연구)

  • Kim, Jong-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.6
    • /
    • pp.108-118
    • /
    • 2013
  • This study has analyzed the process of space information perceived and recognized through the estimation of observation frequency and number according to the time range of observation data acquired from observation experiment with the object of hospital lobby. The followings are the results analyzed at this study. First, the continual observation of 3 and 6 times was attentive and conscious for probing to find an object rather than for acquiring exact information and that of 9 times could be regarded as the time for acquiring visual appreciation. However, the repetitive occurrence of high and low frequencies can be thought of repetitive acts for visual appreciation. Second, the continual observation of 3 and 6 times had the highest observation frequency of II, while that of 9 times had the highest observation frequency of III. In case of 3 and 6 times, the observation frequency had the tendency to become a little higher after being low since V, and in case of 9 times it had the repetition of becoming low and high and from IX it characteristically got higher. This feature can be thought to be the process that the subject repeats the fixation and movement of observation at a visual activity for perception and recognition. In the process of first observation, the observation frequency was the highest after 20 seconds or so, but since then, it gets lower and repeatedly gets higher and lower as time passes. After 90 seconds, the frequency showed the tendency of getting higher continuously. Third, the examination of changing features of frequency may show the characteristics of exploration for and attention to space but if the observation frequency is not associated with observation times for analysis there will a limitation that the features of observation frequency cannot be clarified. Accordingly, the simultaneous analysis of both is very effective for estimating the observation characteristics seen at the processes of perception and recognition. Fourth, the general analysis of the both revealed: with the progress of observation time the discontinuous space exploration decreased, and as the observation time got longer the fixed attention to a specific spot increased. Fifth, in order to estimate the observation characteristics by the change of time range the observation frequency and times by trend line was analyzed, which approach seems to be an appropriate technique that can comprehensively show the overall flow of time series data.