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LOW REGULARITY SOLUTIONS TO HIGHER-ORDER

HARTREE-FOCK EQUATIONS WITH UNIFORM

BOUNDS

Changhun Yang

Abstract. In this paper, we consider the higher-order Hartree-

Fock equations. The higher-order linear Schrödinger equation was

introduced in [5] as the formal finite Taylor expansion of the pseudo-

relativistic linear Schrödinger equation. In [13], the authors estab-

lished global-in-time Strichartz estimates for the linear higher-order

equations which hold uniformly in the speed of light c ≥ 1 and

as their applications they proved the convergence of higher-order

Hartree-Fock equations to the corresponding pseudo-relativistic equa-

tion on arbitrary time interval as c goes to infinity when the Taylor

expansion order is odd. To achieve this, they not only showed the

existence of solutions in L2 space but also proved that the solutions

stay bounded uniformly in c.

We address the remaining question on the convergence of higher-

order Hartree-Fock equations when the Taylor expansion order is

even. The distinguished feature from the odd case is that the group

velocity of phase function would be vanishing when the size of fre-

quency is comparable to c. Owing to this property, the kinetic

energy of solutions is not coercive and only weaker Strichartz esti-

mates compared to the odd case were obtained in [13]. Thus, we

only manage to establish the existence of local solutions in Hs space

for s > 1
3
on a finite time interval [−T, T ], however, the time inter-

val does not depend on c and the solutions are bounded uniformly

in c. In addition, we provide the convergence result of higher-order

Hartree-Fock equations to the pseudo-relativistic equation with the

same convergence rate as the odd case, which holds on [−T, T ].
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1. Introduction

We consider the higher-order Hartree-Fock equations of N(∈ N) par-
ticles  iℏ∂tϕ

(c)
k = H(c)

J ϕ
(c)
k +H(ϕ

(c)
k )− Fk(ϕ

(c)
k ), k = 1, 2, ..., N,

ϕ
(c)
k (0, x) = ϕk,0

(hHF)

where ϕ
(c)
k = ϕ

(c)
k (t, x) : R×R3 → C, m > 0 represents the particle mass,

ℏ is the reduced Plank constant, and c ≥ 1 denotes the speed of light.

The linear differential operator is given by

H(c)
J = −

J∑
j=1

α(j)ℏ2j

m2j−1c2j−2
∆j , α(j) =

(2j − 2)!

j!(j − 1)!22j−1
(j ≥ 1),

and the Hartree-Fock nonlinear terms are given by

H(ϕ
(c)
k ) =

N∑
ℓ=1

(
κ

|x|
∗ |ϕ(c)ℓ |2

)
ϕ
(c)
k ,

Fk(ϕ
(c)
k ) =

N∑
ℓ=1,ℓ ̸=k

(
κ

|x|
∗ (ϕ(c)ℓ ϕ

(c)
k )

)
ϕ
(c)
ℓ .

A real constant κ determines the strength of self-interaction among

quantum particles; it is repulsive if κ > 0, and attractive if κ < 0.

The mass and energy of solutions are conserved as time evolves which

are defined as

M(t) =

N∑
k=1

∥ϕ(c)k ∥2L2(R3),

E(t) =
N∑
k=1

{1

2

〈
H(c)

J ϕ
(c)
k , ϕ

(c)
k

〉
+

1

4

〈
H
(
ϕ
(c)
k

)
− Fk

(
ϕ
(c)
k

)
, ϕ

(c)
k

〉}
,

(1.1)

where ⟨ , ⟩ denotes the complex inner product in L2(R3).

The higher-order linear Schrödinger equation was introduced in [5]:

iℏ∂tϕ(c) = H(c)
J ϕ(c)(hLS)

as the formal approximation of the pseudo-relativistic (or semi-relativistic)

linear Schrödinger equations

(pLS) iℏ∂tψ(c) = H(c)ψ(c),
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where ψ(c) = ψ(c)(t, x) : R × R3 → C is the wave function and the

nonlocal operator

H(c) =
√
m2c4 − c2ℏ2∆−mc2

is the Fourier multiplier of symbol
√
m2c4 + c2ℏ2|ξ|2 −mc2. Indeed, in

the non-relativistic regime |ξ| ≪ mc
ℏ , the Taylor series expansion yields√

ℏ2c2|ξ|2 +m2c4 −mc2 = mc2
(√

1 + ℏ2|ξ|2
m2c2

− 1

)
= ℏ2|ξ|2

2m − ℏ4|ξ|4
8m3c2

+ · · · ≈ ℏ2|ξ|2
2m .

(1.2)

Note that higher-order models include the non-relativistic Schrödinger

equation iℏ∂tψ = − ℏ2
2m∆ψ and the fourth-order equation iℏ∂tψ = (− ℏ2

2m∆−
ℏ4

8m3c2
∆2

)
ψ. In [4], the authors showed that the higher-order linear flow

provides a more accurate approximation as c → ∞ as long as the regu-

larity of data is sufficiently given [4, Theorem A.1], precisely,

(1.3) ∥eitH(c)
ψ0 − eitH

(c)
J ψ0∥L2(Rd) ≤

2T

ℏ
α(J + 1)

m2J+1c2J
∥ψ0∥H2J+2(Rd).

The question on approximation via higher-order equation as c →
∞ can be extended to nonlinear problem. We consider the pseudo-

relativistic Hartree-Fock equation

(pHF) iℏ∂tψ
(c)
k = H(c)ψ

(c)
k +H(ψ

(c)
k )− Fk(ψ

(c)
k ), k = 1, 2, ..., N,

where ψ
(c)
k = ψ

(c)
k (t, x) : R × R3 → C, which describes the mean-field

dynamics of relativistic fermion particles. For the rigorous derivation of

the pseudo-relativistic models we refer to [16, 17, 3] and for the dynamics

of the system we refer to [11, 7, 12, 14]. The higher-order Hartree-Fock

equations (hHF) was introduced in [4] as the formal approximation of

(pHF). Proving the approximation of pseudo-relativistic models by the

non-relativistic models not only justifies consistency of the relativistic

modification but also verifies that non-relativistic models are good ap-

proximations to the pseudo-relativistic models, which are computation-

ally extremely expensive due to the presence of the non-local operator

H(c).

When J is odd, the authors in [13] established that the nonlinear

solutions to (hHF) indeed converge to solutions to (pHF) on any time

interval as c→ ∞ with a more accurate convergence rate as J grows.
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Theorem 1.1 (Theorem 1.7 in [13]). Let J ∈ 2N−1 and c ≥ 1. Sup-

pose that Ψ0 = {ψk,0}Nk=1 ∈ H
1
2 (R3;CN ). If κ < 0, we further assume

that ∥Ψ0∥
H

1
2 (R3;CN )

is sufficiently small. Let Ψ(c)(t) = {ψ(c)
k (t)}Nk=1 ∈

C(R;H
1
2 (R3;CN )) be the global solution to (pHF) with initial data Ψ0,

and let Φ(c)(t) = {ϕ(c)k (t)}Nk=1 ∈ C(R;H
1
2 (R3;CN )) be the global solu-

tion to (hHF) with the same initial data. Then, there exist A,B > 0,

depending on ∥Ψ0∥
H

1
2 (R3;CN )

but independent of c ≥ 1 and J , such that

∥Φ(c)(t)−Ψ(c)(t)∥L2(R3;CN ) ≤ Ac
− J

2(J+1) eBt.(1.4)

The methodology to prove the approximation as c → ∞ is quite

standard. As the first step, it is necessary to find the solutions which

have uniform bounds with respect to c ≥ 1. And then, we write the

solutions in Duhamel formulae and measure the difference in L2(R3).

The convergence rate comes from the Taylor expansion of symbol and

the regularity gap from H
1
2 (R3) where the initial data is given. In the

proof, it is crucial to employ the inequalities with bounds independent of

c ≥ 1. In [13], to prove the Theorem 1.1, the authors indeed established

the global-in-time Strichartz estimates which hold uniformly in c ≥ 1.

As their applications, they proved the local existence of solutions to

(hHF) in L2(R3) which have uniform bounds in c ≥ 1 and extended the

local solutions to global ones with the help of the conservation of mass

and energy (1.1).

In this paper, we consider (hHF) when the Taylor expansion order

J is even. The distinguished feature from the odd order case is that

the dispersion effect is unsatisfactory. Contrary to the odd case when

the phase function is essentially comparable to the Laplacian in |ξ| ≤
2m
ℏ c, the group velocity of phase function for even J vanishes when the

frequency is close to c. More precisely, the phase function is radial and

given by

Ĥ(c)
J ϕ(ξ) = ω

(c)
J (|ξ|)ϕ̂(ξ),

where

ω
(c)
J (r) =

J∑
j=1

(−1)j+1(2j − 2)!ℏ2j−1

(j − 1)!j!(2m)2j−1c2j−2
r2j , for r ≥ 0,
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where one readily verifies that d
drω

(c)
J (r∗) = 0 for some m

ℏ c < r∗ <
2m
ℏ c.

Due the this property, only the uniform-in-c weaker Strichartz estimates

were established in [13] (see Lemma 2.1 below). Additionally, it should

be emphasized that the coerciveness of kinetic energy breaks down.

We establish the local well-posendess of (hHF) in Hs(R3) for s > 1
3

by employing the uniform-in-c weaker Strichartz estimates. The time

interval where the solutions exist does not depend on c > 1 and the local

solutions are bounded on the interval uniformly in c > 1. Due to the

lack of coerciveness of kinetic energy, unfortunately, the local solutions

cannot be extended globally. Let us recall the definition of Sobolev

spaces: W s,p = (1−∆)−
s
2Lp for p ≥ 1 and s ≥ 0.

Theorem 1.2 (Local Hs solutions with uniform-in-c bounds). Let

c ≥ 1 and J ∈ 2N. Suppose that Φ0 = {ϕk,0}Nk=1 ∈ Hs(R3;CN ) for

s > 1
3 . Then, there exists a time T > 0, independent of c ≥ 1, such that

(hHF) has a unique solution Φ(c)(t) = {ϕ(c)k (t)}Nk=1 in the class

Φ(c) ∈ C([−T, T ];Hs(R3;CN )) ∩ Lq
t ([−T, T ];W 2ϵ,r(R3;CN )),

where 0 < ϵ < min(3s−1
4 , 12) and (q, r) = ( 12

1−2ϵ ,
3

1+ϵ) is an even-admissible

pair. Moreover, the solution satisfies

∥Φ(c)∥C([−T,T ];Hs(R3;CN )) + ∥Φ(c)∥Lq
t ([−T,T ];W 2ϵ,r(R3;CN )) ≲ ∥Φ0∥Hs(R3;CN )

(1.5)

where the implicit constant is independent of c ≥ 1.

Remark 1.3. In Theorem 1.2, for example, when s = 1
2 , any 0 < ϵ <

1
8 will be working.

Remark 1.4. We expect that the regularity assumption s > 1
3 might

be lowered once we can improve the weaker Strichartz estimates in (2.2).

Remark 1.5. Employing the local-in-time Strichartz estimates [4,

Lemma 4.3], the authors proved the existence of global solutions to

higher-order Hartree-Fock equations (hHF) in L2(R3) for all J ∈ N
[4, Theorem 4.9]. However, the employed Strichartz estimates are not

uniform in the speed of light c ≥ 1, thus the boundedness of solutions

as c goes to infinity is not guaranteed even in an arbitrarily small time

interval.
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Next, we establish the convergence of (hHF) to (pHF) when J is even

which corresponds to Theorem 1.1 for odd J .

Theorem 1.6. Let J ∈ 2N and c ≥ 1. Suppose thatΨ0 = {ψk,0}Nk=1 ∈
Hs(R3;CN ) for s ≥ 1

2 . Then there exists a time T > 0 depend-

ing on ∥Ψ0∥Hs(R3;CN ), but independent of c > 1, such that Ψ(c)(t) =

{ψ(c)
k (t)}Nk=1 ∈ C(R;Hs([−T, T ];CN )) is the local solution to (pHF) with

initial data Ψ0, and let Φ(c)(t) = {ϕ(c)k (t)}Nk=1 ∈ C([−T, T ];Hs(R3;CN ))

be the local solution to (hHF) with the same initial data. Then, there

exist A > 0, depending on ∥Ψ0∥Hs(R3;CN ) but independent of c ≥ 1, such

that

sup
t∈[−T,T ]

∥Φ(c)(t)−Ψ(c)(t)∥L2(R3;CN ) ≤ Ac−
Js
J+1 .(1.6)

Nevertheless we obtain uniformly bounded solutions to (hHF) in

Hs(R3) for s > 1
3 , the regularity assumption s ≥ 1

2 in Theorem 1.6

is required to obtain uniformly bounded solutions to (pHF). This as-

sumption is same as given in Theorem 1.1. See Proposition 3.1 and the

comment in Remark 3.2. We also obtain the same converge rate as in

Theorem 1.1 when s = 1
2 , but the convergence is valid only for the finite

time interval [−T, T ].

Remark 1.7. The argument in our paper can be directly applied

to the following Hartree equation to provide the similar approximation

results iℏ∂tϕ
(c)
k = H(c)

J ϕ
(c)
k +H(ϕ

(c)
k ),

iℏ∂tψ
(c)
k = H(c)ψ

(c)
k +H(ψ

(c)
k ),

k = 1, 2, ..., N.(1.7)

The limit behavior of stationary states to the higher-order Hartree

equations (1.7) was studied in [9]. We also refer to [15, 10, 8] for non-

relativistic limit (corresponding J = 1) of pseudo-relativistic Hartree

equations. Also, similar non-relativistic convergence can be formulated

for other types of relativistic models, and there have been numerous

results on this direction. We refer to [18, 19] for the non-relativistic

limit from the Klein-Gordon and the Dirac equation to the nonlinear

Schrödinger equation. Also, we refer to [1, 2] for the convergence from

the Dirac-Maxwell (resp., Klein-Gordon-Maxwell) system to the Vlasov-

Poisson (resp., Schrödinger-Poisson) system. Finally, we refer to [20, 21,
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22] for the non-relativistic limits of the Dirac-Maxwell, Klein-Gordon-

Maxwell and Klein-Gordon-Zakharov systems.

2. Preliminaries

Let us recall from [13, Theorem 1.4] the uniform-in-c Strichartz esti-

mates for higher-oder linear equations (hLS) when J is even.

Theorem 2.1 (Strichartz estimates for (hLS) : even case). Let J ∈
2N. Then, there exists A > 0, independent of c ≥ 1, such that for an

even-admissible pair (q, r),

(2.1) 2 ≤ q ≤ ∞, 2 ≤ r <∞,
2

q
+

1

r
=

1

2

we have ∥∥e−itH(c)
J ψ0

∥∥
Lq
t (R;Lr

x(R3))
≤ A

(m
ℏ

) 1
q ∥ψ0∥

Ḣ
4
q (R3)

,∥∥∥∫ t

0
e−i(t−s)H(c)

J F (s)ds
∥∥∥
Lq
t (R;Lr

x(Rd))
≤ A

(m
ℏ

) 1
q ∥F∥

L1
t (R;H

4
q (R3))

.

(2.2)

Next, we introduce key inequalities to handle the Hartree-Fock non-

linear term.

Lemma 2.2. Let s ≥ 1
2 and 0 < ϵ≪ 1. Then, we have∥∥|x|−1 ∗ (f1f2)
∥∥
L∞(R3)

≲ ∥f1∥Hs(R3)∥f2∥Hs(R3),(2.3)

and ∥∥|x|−1 ∗ (f1f2)
∥∥
L∞(R3)

≲ ∥f1∥
1
2

L
6

2−ϵ (R3)
∥f1∥

1
2

L
6

2+ϵ (R3)
∥f2∥

1
2

L
6

2−ϵ (R3)
∥f2∥

1
2

L
6

2+ϵ (R3)
.

(2.4)

For the proof, we refer to [10, Lemma 3.2] and [6, Lemma 2.3], re-

spectively. From (2.3) and the fractional Leibniz rule, one immediately

has that ∥∥(|x|−1 ∗ (f1f2)
)
f3
∥∥
Hs(R3)

≲ ∥f1∥Hs(R3)∥f2∥Hs(R3)∥f3∥Hs(R3), for s ≥ 1

2
.

(2.5)

Using the Hardy-Littlewood-Sobolev inequality, one verifies that∥∥(|x|−1 ∗ (f1f2)
)
f3
∥∥
L2(R3)

≲ ∥f1∥L3(R3)∥f2∥L2(R3)∥f3∥L3(R3).(2.6)
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3. Proof of Main theorem

3.1. Proof of Theorem 1.2: Local Hs solutions with uniform-

in-c bounds

By time reverse property, let I = [0, T ] be a sufficiently small interval

to be chosen later. Duhamel’s principle ensures that the solution to

(hHF) is equivalent to the following integral formula:

Γk(Φ
(c)) = e−itH(c)

J ϕk,0 − i

∫ t

0
e−i(t−s)H(c)

J

(
H(ϕ

(c)
k )− Fk(ϕ

(c)
k )

)
(s) ds.

Then, the standard argument shows the map Γ is contractive in the ball

XI,A =
{
Φ(c) ∈ Ct(I;H

s(R3;CN )) ∩ L
12

1−2ϵ

t (I;W 2ϵ, 3
1+ϵ (R3;CN )) :

∥Φ(c)∥XI
≤ 2A∥Φ0∥Hs(R3;CN )

}
,

∥Φ(c)∥XI
:= ∥Φ(c)∥Ct(I;Hs(R3 CN )) + ∥Φ(c)∥

L
12

1−2ϵ
t (I;W

2ϵ, 3
1+ϵ (R3;CN ))

.

Here, A > 0 denotes the uniform-in-c constant in Theorem 2.1. Indeed,

by unitarity and Strichartz estimates (2.2), since ϵ < 3s−1
4 , we have

∥Γ(Φ(c))∥Ct(I;Hs(R3;CN )) + ∥Γ(Φ(c))∥
L

12
1−2ϵ
t (I;W

2ϵ, 3
1+ϵ (R3;CN ))

≤ A∥Φ0∥Hs(R3;CN )

+ 2A|λ|
N∑

k,ℓ=1

{∥∥∥(|x|−1 ∗ |ϕ(c)ℓ |2
)
ϕ
(c)
k

∥∥∥
L1
t (I;H

s(R3))

+
∥∥∥(|x|−1 ∗ (ϕ(c)ℓ ϕ

(c)
k )

)
ϕ
(c)
ℓ

∥∥∥
L1
t (I;H

s)(R3)

}
.

We only estimate the latter term in the last line, then the same argument

applies to the former term. Applying the fractional Leibniz rule and

(2.4), we estimate∥∥∥(|x|−1 ∗ (ϕ(c)ℓ ϕ
(c)
k )

)
ϕ
(c)
ℓ

∥∥∥
Hs(R3)

≲∥∥∥|x|−1 ∗
(
ϕ
(c)
ℓ ϕ

(c)
k

)∥∥∥
L∞(R3)

∥ϕ(c)ℓ ∥Hs(R3)(3.1)

+
∥∥∥|x|−1 ∗

(
ϕ
(c)
ℓ ϕ

(c)
k

)∥∥∥
W

s, 6
1+2ϵ (R3)

∥ϕ(c)ℓ ∥
L

3
1−ϵ (R3)

.(3.2)
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Using (2.4) and the Sobolev embedding, we bound (3.1) by

∥ϕ(c)ℓ ∥
1
2

L
3

1−ϵ (R3)
∥ϕ(c)ℓ ∥

1
2

L
3

1+ϵ (R3)
∥ϕ(c)k ∥

1
2

L
3

1−ϵ (R3)
∥ϕ(c)k ∥

1
2

L
3

1+ϵ (R3)
∥ϕ(c)ℓ ∥Hs(R3)

≲ ∥ϕ(c)ℓ ∥
W

2ϵ, 3
1+ϵ (R3)

∥ϕ(c)k ∥
W

2ϵ, 3
1+ϵ (R3)

∥ϕ(c)ℓ ∥Hs(R3).

Applying the Hardy-Littlewood-Sobolev inequality and Sobolev embed-

ding, we bound (3.2) by(
∥ϕ(c)ℓ ∥

L
3

1+ϵ (R3)
∥ϕ(c)k ∥Hs(R3) + ∥ϕ(c)k ∥

L
3

1+ϵ (R3)
∥ϕ(c)ℓ ∥Hs(R3)

)
∥ϕ(c)ℓ ∥

L
3

1−ϵ (R3)

≲ ∥ϕ(c)ℓ ∥2
W

2ϵ, 3
1+ϵ (R3)

∥ϕ(c)k ∥Hs(R3)

+ ∥ϕ(c)ℓ ∥
W

2ϵ, 3
1+ϵ (R3)

∥ϕ(c)k ∥
W

2ϵ, 3
1+ϵ (R3)

∥ϕ(c)ℓ ∥Hs(R3),

where we used that

∥f∥
L

3
1+ϵ (R3)

≲ ∥f∥
W

σ, 3
1+ϵ (R3)

, for σ ≥ 0.

Then, by using the Hölder inequality in time, we obtain∥∥∥(|x|−1 ∗ (ϕ(c)ℓ ϕ
(c)
k )

)
ϕ
(c)
ℓ

∥∥∥
L1
t (I;H

s(R3))

≲ T
5+2ϵ

6 ∥ϕ(c)ℓ ∥
L

12
1−2ϵ
t W

2ϵ, 3
1+ϵ

(
∥ϕ(c)ℓ ∥

L
12

1−2ϵ
t W

2ϵ, 3
1+ϵ

+ ∥ϕ(c)k ∥
L

12
1−2ϵ
t W

2ϵ, 3
1+ϵ

)
×
(
∥ϕ(c)ℓ ∥L∞

t Hs + ∥ϕ(c)k ∥L∞
t Hs

)
.

Collecting all, we conclude that

∥Γ(Φ(c))∥XI
≤ A∥Φ0∥L2(R3;CN )

+ 4A|λ|CT
5+2ϵ

6

N∑
k,ℓ=1

{(
∥ϕ(c)ℓ ∥

L
12

1−2ϵ
t W

2ϵ, 3
1+ϵ

+ ∥ϕ(c)k ∥
L

12
1−2ϵ
t W

2ϵ, 3
1+ϵ

)
× ∥ϕ(c)ℓ ∥

L
12

1−2ϵ
t W

2ϵ, 3
1+ϵ

(
∥ϕ(c)ℓ ∥L∞

t Hs + ∥ϕ(c)k ∥L∞
t Hs

)}
≤ A∥Φ0∥L2(R3;CN ) + 4A|λ|CT

5+2ϵ
6 ∥Φ(c)∥3XI

,

for some C independent of c ≥ 1. Analogously, we obtain such an a-

priori bound for difference of two solutions Φ
(c)
1 ,Φ

(c)
2 ∈ XI,A that

∥Γ(Φ(c)
1 )− Γ(Φ

(c)
2 )∥XI

≤ 4A|λ|CT
5+2ϵ

6 (∥Φ(c)
1 ∥XI

+ ∥Φ(c)
2 ∥XI

)2∥Φ(c)
1 − Φ

(c)
2 ∥XI

.
(3.3)
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By taking an appropriate small T depending on ∥Φ0∥Hs(R3;CN ), the map

Γ is a contraction map in XI,A, thus we can find the solution Φ(c) sat-

isfying

∥Φ(c)∥XI
≤ 4A∥Φ0∥Hs(R3;CN ).(3.4)

3.2. Proof of Theorem 1.6: Higher-order approximation when

J is even

3.2.1. Results on psuedo-relativistic equations. The well-posedness re-

sults for (hHF) on the Sobolev space Hs(R3) have been established in

[7, 11, 14, 12]. In particular, the proof of the local well-posedness in

Hs(R3) for s ≥ 1
2 follows from the standard contraction mapping prin-

ciple only with the help of Sobolev embedding, which implies that the

solutions are bounded in uniformly in c. The statement of the result

(without proof) is as follows:

Proposition 3.1. Let c ≥ 1. Suppose that Ψ0 = {ψk,0}Nk=1 ∈
Hs(R3;CN ) for s ≥ 1

2 . Then, there exists a time T > 0, independent

of c > 1, such that there exists a local solutions Ψ(c) = {ψ(c)
k (t)}Nk=1 ∈

C([−T, T ];Hs(R3;CN )) to (hHF) such that

sup
t∈[−T,T ]

∥Ψ(c)(t)∥Hs(R3;CN ) ≲ ∥Ψ0∥Hs(R3;CN ),(3.5)

where the implicit constant is independent of c > 1.

Remark 3.2. In Proposition 3.1, the assumption on regularity s ≥ 1
2

is necessary to obtain solutions uniformly bounded in c ≥ 1. In fact,

by allowing the dependence on c, the regularity assumption for local

well-posedness of (hHF) can be improved by just using the dispersive

property, namely, Strichartz estimates for (pLS). For example, in [7], the

authors proved the local well-posedness of (hHF) for s > 1
3 . However,

we cannot lower the regularity assumption to below 1
2 if we persist in

obtaining solutions which have uniform bounds in c ≥ 1, even though

we employ the following uniform-in-c Strichartz estimates because of an

additional loss in c ≥ 1 besides the regularity loss.

Lemma 3.3 (Lemma 2.1 in [19]). For 2 ≤ q ≤ ∞, 2 ≤ r < ∞ such

that 1
q +

1
r = 1

2 , we have∥∥∥e−itH(c)
ψ0

∥∥∥
Lq
t (R;Lr

x(R3))
≤ Ac

1
q ∥ψ0∥

H
2
q (R3)

,(3.6)
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where A is independent of c > 1.

Indeed, to obtain uniformly bounded solutions via the contraction

mapping argument, one also has to bound c
1
q in the left-hand side of

(3.6), which requires the regularity, s > 1
2 , of solutions, not just s >

1
3 .

3.2.2. Approximation. We can easily generalize the result in [13, Lemma 5.4],

with a slight modification, to a function in any Sobolev spaces as follows:

Lemma 3.4. Let c ≥ 1, t ∈ R and s ≥ 0. For any f ∈ Hs(R3), we

have

∥(e−itH(c) − e−itH(c)
J )f∥L2(R3) ≲ c−

Js
J+1 ⟨t⟩∥f∥Hs(R3),

where the implicit constant is independent of c ≥ 1.

Now we are ready to prove the Theorem 1.6.

Proof of Theorem 1.6. We write the difference of (hHF) and (pHF)

with Ψ0 = Φ0 as

ψ
(c)
k (t)− ϕ

(c)
k (t) = (e−itH(c) − e−itH(c)

J )ψk,0

− i

∫ t

0

(
e−i(t−s)H(c) − e−i(t−s)H(c)

J

)(
H(ψ

(c)
k )− Fk(ψ

(c)
k )

)
(s) ds(s)ds

+ iκ

∫ t

0
e−i(t−s)H(c)

J N1(ψ
(c)
k , ϕ

(c)
k )(s) ds

+ iκ

∫ t

0
e−i(t−s)H(c)

J N2(ψ
(c)
k , ϕ

(c)
k )(s) ds

=: I + II + III + IV,
for k = 1, 2, · · · , N , where

N1(ψ
(c)
k , ϕ

(c)
k ) =

N∑
ℓ=1

(
|x|−1 ∗ (|ψ(c)

ℓ |2 − |ϕ(c)ℓ |2)
)
ϕ
(c)
k

−
N∑
ℓ=1

(
|x|−1 ∗ (ψ(c)

ℓ ψ
(c)
k − ϕ

(c)
ℓ ϕ

(c)
k )

)
ϕ
(c)
ℓ ,

N2(ψ
(c)
k , ϕ

(c)
k ) =

N∑
ℓ=1

(
|x|−1 ∗ (|ψ(c)

ℓ |2)
)
(ψ

(c)
k − ϕ

(c)
k )

−
N∑
ℓ=1

(
|x|−1 ∗ (ψ(c)

ℓ ψ
(c)
k )

)
(ψ

(c)
ℓ − ϕ

(c)
ℓ ).
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By Lemma 3.4, we immediately obtain

(3.7) ∥I∥L2(R3) ≲ c−
Js
J+1 ⟨t⟩∥ψk,0∥Hs(R3).

Moreover, by using Lemma 3.4, (2.5) and Proposition 3.1, we have

(3.8)

∥II∥L2(R3) ≲ c−
Js
J+1

∫ t

0
⟨t− s⟩

∥∥∥H(ψ
(c)
k )(s)− Fk(ψ

(c)
k )(s)

∥∥∥
Hs(R3)

ds

≲ c−
Js
J+1 ⟨t⟩2 sup

s∈[0,t]
∥ψ(c)

k (s)∥3Hs(R3) ≲ c−
Js
J+1 ⟨t⟩2∥ψk,0∥3Hs(R3).

Furthermore, by (2.6) and the Sobolev embedding Hs(R3) ↪→ L3(R3)

for s ≥ 1
2 , we have

(3.9)

∥III∥L2(R3) ≲
∫ t

0

∥∥∥N1(ψ
(c)
k , ϕ

(c)
k )(s)

∥∥∥
L2(R3)

ds

≲
∫ t

0

(
∥Ψ(c)(s)∥Hs(R3) + ∥Φ(c)(s)∥Hs(R3)

)
∥(Ψ(c) − Φ(c))(s)∥L2(R3)

×
(
∥ψ(c)

k (s)∥Hs(R3) + ∥ϕ(c)k (s)∥Hs(R3)

)
ds

+

∫ t

0

(
∥Ψ(c)(s)∥2Hs(R3) + ∥Φ(c)(s)∥2Hs(R3)

)
∥(ψ(c)

k − ϕ
(c)
k )(s)∥L2(R3) ds

and

(3.10)

∥IV∥L2(R3) ≲
∫ t

0

∥∥∥N2(ψ
(c)
k , ϕ

(c)
k )(s)

∥∥∥
L2(R3)

ds

≲
∫ t

0
∥Ψ(c)(s)∥2Hs(R3)∥(ψ

(c)
k − ϕ

(c)
k )(s)∥L2(R3) ds

+

∫ t

0
∥Ψ(c)(s)∥Hs(R3)∥(Ψ(c) − Φ(c))(s)∥L2(R3)∥ψ

(c)
k ∥Hs(R3) ds

respectively. Thus, by collecting (3.7)–(3.10), and by applying Proposi-

tion 3.1, we conclude that

∥Ψ(c)(t)− Φ(c)(t)∥L2(R3)

≲ c−
Js
J+1 ⟨t⟩2∥Ψ0∥Hs(R3)

(
1 + ∥Ψ0∥2Hs(R3)

)
+

∫ t

0

(
∥Ψ0(s)∥2Hs(R3) + ∥Φ(c)(s)∥2Hs(R3)

)
∥(Ψ(c) − Φ(c))(s)∥L2(R3) ds.
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By Gronwall’s inequality, in addition to (1.5), we have

∥Ψ(c)(t)− Φ(c)(t)∥L2(R3) ≲ c−
Js
J+1AeBt,

here the constants A,B depend on ∥Ψ0∥Hs(R3), but not c.
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