• Title/Summary/Keyword: High-workability

Search Result 431, Processing Time 0.02 seconds

Prediction of workability of concrete using design of experiments for mixtures

  • Yeh, I-Cheng
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 2008
  • In this study, the effects and the interactions of water content, SP-binder ratio, and water-binder ratio on the workability performance of concrete were investigated. The experiments were designed based on flatted simplex-centroid experiment design modified from standard simplex-centroid one. The data gotten from the design was used to build the concrete slump model using neural networks. Research reported in this paper shows that a small number of slump experiments can be performed and meaningful data obtained with the experiment design. Such data would be suitable for building slump model using neural networks. The trained network can be satisfactorily used for exploring the effects of the components and their interactions on the workability of concrete. It has found that a high water content and a high SP/b ratio is essential for high workability, but achieving this by increasing these parameters will not in itself guarantee high workability. The w/b played a very important role in producing workability and had rather profound effects; however, the medium value about 0.4 is the best w/b to reach high slump without too much effort on trying to find the appropriate water content and SP/b.

A Sugeestion of Rheological Performance Range for Manufacturing Mid-workability Concrete (중유동 콘크리트 제조를 위한 레올로지 성능 범위 제안)

  • Lee, Yu-Jeong;Lee, Young-Jun;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.305-318
    • /
    • 2021
  • The aim of the research is providing the rheological performance range for manufacturing "mid-workability concrete". The mid-workability concrete means the normal strength range concrete mixture with high workability. Since there is not enough study or quantitative definitions on performance of the mid-workability concrete, in this research, the performance range for high workability of mid-workability concrete mixture using rheology. Because of the mixture characteristics of generally used normal strength concrete such as relatively high water-to-cement ratio and no SCMs, segregation of coarse aggregate should be prevent to achieve a successful high workability. From the experimental study in this research scope, 5 to 35 Pa.s of plastic viscosity was desirable to prevent segregation for nid-workability concrete, and general performance range with rheological parameters was provided.

Performance Analysis of Low-viscosity type Superplasticizer (저점도형 감수제의 성능 분석)

  • Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.35-36
    • /
    • 2016
  • Recently, with the increasing demand of high performance of concrete, the mix design of concrete mixture has became low water-to-binder ratio with high binder content. To compensate these trend of mix design, high range water reducer, or superplascizier has been invented to achieve high flowable concrete. Although this superplasticizer provides favorable workability based on its dispersing action on the components of concrete mixture, it has an limitation of decreasing viscosity of the mixture, and thus it is difficult to secure sufficient workability for high performance concrete mixtures with high binder content. To improve the workability of concrete with high viscosity, recently, low-viscosity type superplasticizer was introduced, and in this research, a fundamental properties of low-viscosity type superplasticizer is evaluated.

  • PDF

A Study on the Improvement of Workability of High Strength Steed Fiber Reinforced Cementitious Composites (고강도 강섬유 보강 시멘트 복합체의 워커빌리티 향상에 관한 연구)

  • Koh, Kyung-Taeg;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.141-148
    • /
    • 2004
  • This paper present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the workability of high strength steel fiber reinforced cementitious composites. As for the test results, it was found that the workability of high strength steel fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of steel fiber improved the workability of fiber reinforced cementitious composites. And the steel fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

An Experimental Study on the Mechanical Properties of High Sulphated Cement Concrete with Fly-Ash (고황산염시멘트와 플라이애쉬를 사용한 고강도콘크리트의 역학적 특성에 관한 실험적 연구)

  • 박승범;임창덕;최수홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.175-180
    • /
    • 1994
  • The purpose of this experimental study is to improve the workability and durability in high sulphated cement concrete with fly-ash. As a results, we can make high strength concrete by using only high sulphated cement but try to improve the workability and degree of strength by adding 10% fly-ash but the effect beyond my expectation to improve the workability and degree of strength does not show, and the improvable effect except the drying shrinkage of durability dose not show, either. So we must give attention to using fly-ash.

  • PDF

Modeling slump of concrete with fly ash and superplasticizer

  • Yeh, I-Cheng
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.559-572
    • /
    • 2008
  • The effects of fly ash and superplasticizer (SP) on workability of concrete are quite difficult to predict because they are dependent on other concrete ingredients. Because of high complexity of the relations between workability and concrete compositions, conventional regression analysis could be not sufficient to build an accurate model. In this study, a workability model has been built using artificial neural networks (ANN). In this model, the workability is a function of the content of all concrete ingredients, including cement, fly ash, blast furnace slag, water, superplasticizer, coarse aggregate, and fine aggregate. The effects of water/binder ratio (w/b), fly ash-binder ratio (fa/b), superplasticizer-binder ratio (SP/b), and water content on slump were explored by the trained ANN. This study led to the following conclusions: (1) ANN can build a more accurate workability model than polynomial regression. (2) Although the water content and SP/b were kept constant, a change in w/b and fa/b had a distinct effect on the workability properties. (3) An increasing content of fly ash decreased the workability, while raised the slump upper limit that can be obtained.

A Fundamental Study on the Mixing Method to Workability and Engineering Properties of High Strength Flowing Concrete (고강도유동화콘크리트의 시공성 및 공학적 특성에 미치는 비빔방법에 관한 기초적 연구)

  • 최진성;이상수;김진만;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.1-4
    • /
    • 1993
  • This is the study on the feature of mixing method of high strength flowing concrete using the superplasticizing agent which is used to aim considerable reduction effect of water contents in the same level of consistency and workability. It is the aim of this study to compare workability and engineering properties of high strength flowing concrete according to mixing order of materials and the addition time and method of superplssticizing agent.

  • PDF

Strength and Workability Characteristics of High-Strength Fly Ash Concrete (고강도 플라이애쉬 콘크리트의 강도 및 작업성 특성)

  • 김진근;박연동;성근열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.125-130
    • /
    • 1990
  • Fly Ash in concrete is known to be effective in improving workability, the reduction of heat of hydration, increasing the long-term compressive strength, and improving durability. Recently, fly ash is consedered an essential material for the high-strength concrete. In this paper, investigations for the strength and workability characteristics was carried out when fly ash was used in the high-strength concrete. As the result, fly ash was effective in increasing the long-term compressive strength, but the short-term compressive strength was gradually decreased with increating fly ash contents. And also the use of superplasticzers was required for providing the proper workability when fly ash contents were increased. The optimum content of fly ash was about 10%.

  • PDF

Experimental Study on the Development of High-Performance Concrete (Properties of Super-flowing Concrete) (고성능 콘크리트 개발에 관한 실험적 연구(제2보, 초유동 콘크리트의 기초물성))

  • 조일호;한정호;정재동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.51-56
    • /
    • 1993
  • This is a part a study on the development of High-Performance Concrete ; about experimental results from several test methods to estimate workability in fresh concrete and influences of concrete mix design that affects properties of super-flowing concrete. Super-flowing concrete can be filled in a formwork without any vibration because of its excellent workability of passing narrow space and filling complicated shaped mold, new test methods should be used to estimate the workability and rhelogy in super-flowing concrete instead of slump test method in conventional concrete.

  • PDF

Development of High Performance Concrete Tunnel Linnig with Large Dimension (대단면 터널용 고성능 콘크리트 라이닝의 개발)

  • Cha Hun;Lee Chang Hoon;Sohn Yu Shin;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.53-56
    • /
    • 2005
  • High flowable concrete was first developed in 1988 to achieve durable concrete structures. High flowable concrete can improve workability sharply reason why the concrete has properties of resistance to segregation, filling ability, passing ability without compacting. Therefore, as we apply a high flowable concrete to a large dimensional tunnel which constructed in special environment, we can get workability, strength and durability required. Tunnel lining concrete with a large dimension has to use necessarily fly ash and slag for the properties of high flowability and watertight. We can expect improvement of workability and durability, mitigation of hydration, reducing shrinkage, enhancement of watertight by using cementitious materials. This paper proposes investigations for establishing a mix-design method and high flowability-strength testing methods have been carried out from the viewpoint of making a standard concrete tunnel lining with large dimension a standard.

  • PDF