• 제목/요약/키워드: High-weight concrete

검색결과 520건 처리시간 0.03초

방사선 차폐용 고밀도 콘크리트 시공에 관한 연구 (A Study on the Construction of High Density Concrete for Radiation Shield)

  • 이제방;조용복;변형균;유건철;임병대
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.399-404
    • /
    • 1994
  • Heavyweight(or High density) concrete, which is generally for shiedling structures, differs from normal weight concrete by having a higher density and special compositions to improve its attenuation properties. There are setting 7 Beam Ports around the reactor of the KMRR Project(Korea Multi-purpose Research Reactor) conducted by the KAERI(Korea Atomic Energy Research Institute). High density(p=5.0t/$\textrm{m}^3$) and Heavyweight(p=3.5t/$\textrm{m}^3$) concrete were placed around the Beam Ports in order to shield radiation. This paper was discussed about construction of High density concrete. High density concrete was placed with method of Preplace Aggregate. Coarse metallic aggregate(steel shot) was used. Boron, boron carbide(B4C), was used to capture effctively the neutrom. The mock-up test was carried out. And the consturction of High density concrete was performed successfully.

  • PDF

PP섬유 혼입 고강도 경량골재콘크리트의 내화특성 (Fire Performance of Structural Lightweight Aggregate Concrete using PP fiber)

  • 송훈;추용식;이종규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.797-800
    • /
    • 2006
  • Normally, Structural light-weight aggregate concrete(LWC) has been main used in high rise building with the object of wight loss. In spite of LWC have the advantage of light-weight, limit the use of strength restrictions by reason that explosive spalling in fire. Especially, LWC is occurred serious fire performance deterioration by explosive spalling. Thus, this study is concerned with fire performance of LWC for the purpose of using PP fibers prevent to explosive spalling. From the experimental test result, LWC is happened explosive spalling.

  • PDF

적산온도에 의한 고유동콘크리트의 압축강도 예측 (Prediction of the Compressive Strength of High Flowing Concrete by Maturity)

  • 길배수;한장현;김규용;권영진;남재현;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.281-286
    • /
    • 1998
  • The aim of this study is to compare the development of compressive strength of high-Flowing concrete with maturity and to investigate the applicability of strength prediction models of concrete. An experiment was attempted on the high-flowing concrete mixes using Ordinary portland cement, High belite cement, Blast furance slage cement and replaced Fly-ash of 30% by weight of Ordinary portland cement, the water-binder ratios of mixes being 0.35 and the curing temperatures being 30, 20, 10, 5$^{\circ}C$. Test results of mixes are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of high-flowing concrete.

  • PDF

간편배합설계 방법을 이용한 고강도경량 자기충전콘크리트의 역학적 특성 (Mechanical properties of high strength lightweight self-compacting concrete using simple mixed design)

  • 최연왕;신화철;김용직;최욱;조선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.204-207
    • /
    • 2004
  • In this paper, mechanical properties of the high strength lightweight self-compacting concrete with simple mixed design method was investigated. Experimental tests were performed as such compressive strength, splitting tensile strength, modulus of elasticity and density of high strength lightweight self-compacting concrete. The 28 days compressive strength of high strength lightweight self-compacting concrete with the LC replacement ratio of $100\%$ reduces about $31\%$ but LF replacement ratio of $100\%$ increase about $20\%$ compared that of the control concrete. The structural efficiency of high strength lightweight self-compacting concrete increase with proportional to the replacement into of LF. The relationship between the splitting tensile strength and 28 days compressive strength can be represented by the equation $f_s=0.076f_{ck}+0.5582$. The modulus of elasticity was found to be lower than that of normal weight concrete, ranging form 24 to 33 GPa.

  • PDF

초경량골재를 사용한 경량콘크리트의 공학적 특성 (Engineering Properties of Lightweight Concrete Using Surlightweight Aggregate)

  • 성찬용;김성완;민정기
    • 한국농공학회지
    • /
    • 제36권4호
    • /
    • pp.48-55
    • /
    • 1994
  • This study was performed to evaluate the engineering properties of the lightweight concrete using surlightweight aggregate foaming agent and high performance agent. The following conclusions were drawn. 1. The unit weight of type A, B and C concrete was 0.912t/m$^3$, 1.592t/m$^3$ and 1.070t/m$^3$, respectively. Specially, the unit weight of type A concrete was decreased 42% than that of the type B concrete. 2. The highest engineering property was measured in the lightweight concrete using high performance agent Also, the ratio of tensile and bending strength to compresive streng-th of the lightweight concrete was higher than that of the normal cement concrete. 3. The dynamic modulus of elasticity of the lightweight concrete was in the range of 2.86 x 10 5~9.86 x 10 5 kg/cm$^2$ which was approximately 300% than that of the normal cement concrete. 4. The ultrasonic pulse velocity of the lightweight concrete was in the range 2047~3394 n/sec, which was smaller than that of the normal cement concrete.

  • PDF

경량 굵은골재 비중 및 혼합률에 따른 콘크리트의 자기충전성 (The self-compacting property of concrete as to specific gravity and mixing proportion of lightweight coarse aggregate)

  • 최연왕;김용직;최욱;이상호;조선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.747-750
    • /
    • 2004
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied. to . structures such as long-span bridge and high rise buildings. However, the lightweight concrete requires specific design mix method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the design mix method of high performance self-compacting concrete for the lightweight concrete. Therefore, this study introduces a production of self-compacting concrete, PF-modified and improved version of Nan-Su's design mix method of self-compacting concrete. Through a series of test mixes conducted during the study, the quality of the concrete at its fresh condition has been evaluated per the 2nd class rating standards of self-compacting concrete published by JSCE, especially focused in its fluidity, segregation resistance ability, and filling ability.

  • PDF

Properties and durability of concrete with olive waste ash as a partial cement replacement

  • Tayeh, Bassam A.;Hadzima-Nyarko, Marijana;Zeyad, Abdullah M.;Al-Harazin, Samer Z.
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.59-71
    • /
    • 2021
  • This research aims to study the utilization of olive waste ash (OWA) in the production of concrete as a partial substitute for cement. Effects of using OWA on the physical and mechanical properties of concrete mixtures have been investigated. This is done by carrying out tests involving the addition of various percentages of OWA to cement (0%, 5%, 10% and 15%). For each percentage, tests were performed on both fresh and hardened concrete; these included slump test, unit weight test and compressive strength test after 7, 28 and 90 days. Durability tests were investigated in solutions containing 5% NaOH and MgSO4 by weight of water. In addition, resistance to high temperatures was tested by subjecting the cubes to high temperatures of up to 170℃. The results of this research indicate that a higher percentage of OWA gives a lower compressive strength and lower workability but higher performance in terms of durability against both different weather conditions and high temperatures.

고성능 콘크리트의 실용화를 위한 시공특성에 관한 실험적 연구 (An Experimental Study on Workability for Practical Use of High-Performance Concrete)

  • 양근혁;이영호
    • 한국건축시공학회지
    • /
    • 제3권1호
    • /
    • pp.139-146
    • /
    • 2003
  • The special requirements of high-performance concrete(HPC) could be enhanced property over others such as compressive strength, durability, and construction practices. In order to satisfy these requirements a series of laboratory trial mixes and following mock-up test of reinforced concrete wall at field were performed in this study. The objective of this study was to quantitatively evaluate the workability, compressive strength, and the increased heat of hydration caused by the increase of the specific weight of cement according to various variables. Six example series designed about a minimum compressive strength of 500kgf/$\textrm{cm}^2$ at 28 days, and an approximately slump and slump flow of 25cm and 60cm respectively were tested. The selection process of the specific weight of water and the percentage of fly-ash transposition determined to be most suitable for the production of HPC is presented in the following paper.

플라이 애시 및 석고를 활용한 고강도 콘크리트의 성능개선 (Improvement of Properties of High Strength Concrete Using Fly Ash and Gypsum)

  • 김기형;최재진;최연왕
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.99-105
    • /
    • 1999
  • In producing high strength concrete, the most practical method is to use high range water reducing admixture(HRWR). Workabili쇼 of concrete using HRWR varies rapidly with elapsed time after mixing. Effects of fly ash and gypsum on slump loss and compressive strength of concrete were examined by experiment in this study. The slump loss of high strength concrete was reduced with increase of substitution ratio of fly ash. When 2~4% gypsum of cement weight was applied, the reduction of slump loss was not prominent and strength increase appeared at all test ages.

유기섬유의 열적 특성이 고강도 콘크리트 폭열에 미치는 영향 (The Effect of Thermal Characteristic of Organic Fibres on the Spalling of High Strength Concrete)

  • 박찬규;이승훈;김규동;손유신
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.37-40
    • /
    • 2005
  • Recently, in order to reduce the spalling of high strength concrete under fire, the addition of organic fibres to high strength concrete has been investigated. In this study, the effect of thermal characteristic of organic fibres on the spalling of high strength concrete was experimantally investigated. Two types of fibre, polypropylene(PP) and polyvinyl alcohol(PVA) fibres, were selected, and the strength level of concrete was correnponding to the design strength of 80MPa. As a result, it appears that when the remaining ratios(by weight) of fibre at 300$^{circ}C$ and 350$^{circ}C$ are less than 80$\%$ and 50$\%$, respectively, the spalling of high strength concrete is prevented.

  • PDF