• Title/Summary/Keyword: High-transmittance film

Search Result 396, Processing Time 0.029 seconds

Properties of AZO thin film with sputtering current at room temperature (투입전류 변화에 따라 실온 제작한 AZO 박막의 특성)

  • Kim, Kyung-Hwan;Cho, Bum-Jin;Keum, Min-Jong;Son, In-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1859-1861
    • /
    • 2005
  • The ZnO:Al thin films were prepared on glass by Facing Target Sputtering (FTS) system. We investigated electrical, optical, and structural properties of AZO thin film with sputtering current $0.1[A]{\sim}0.6[A]$. We obtained the lowest resistivity $2.3{\times}10^{-4}[{\Omega}-cm]$ at sputtering current 0.6[A] from the 4-point probe and the strong (002) peak at sputtering current 0.3[A] from the X-ray Diffractometer (XRD ). The optical transmittance of AZO thin films show a very high transmittance of $80{\sim}95%$ in the visible range and exhibit the absorption edge of about 350nm.

  • PDF

Substrate Temperature Effects on Structural and Optical Properties of RF Sputtered CdS Thin Films

  • Hwang, Dong-Hyeon;Choe, Jeong-Gyu;Son, Yeong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.218.2-218.2
    • /
    • 2013
  • In this study, CdS thin films were deposited onto glass substrates by radio frequency magnetron sputtering. The films were grown at various substrate temperatures in the range of 100 to $250^{\circ}C$. The effects of substrate temperatures on the structural and optical properties were examined. The XRD analysis revealed that CdS films were polycrystalline and retained the mixed structure of hexagonal wurtzite and cubic phase. The percentages of hexagonal structured crystallites in the films were seen to be increased by increasing substrate temperatures. The film grown at $250^{\circ}C$ showed a relatively high transmittance of 80% in the visible region, with an energy band gap of 2.45 eV. The transmittance date analysis indicated that the optical band gap was closely related to the substrate temperatures.

  • PDF

Preparation of ITO thin films with $O_2$ gas ratio (산소 가스 유량비 변화에 따른 ITO 박막의 제작)

  • Kim, Geon-Hi;Keum, Min-Jong;Lee, Gyu-Sung;Kim, Han-Ki;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.547-550
    • /
    • 2004
  • Indium tin oxide(ITO) films were prepared as a function of varying the proportion of oxygen$[0{\sim}1.0sccm]$ at fixed he gas[20sccm] by facing targets sputtering(FTS) system. Then electrical and optical properties of ITO thin films were estimated by Hall effect measurement system and UV/VIS-spectrometer. In the result, at very little oxygen rate, we can prepare a low resistivity ITO thin film of $3.40{\times}10^{-4}[\Omega{\cdot}cm]$ and transmittance of over 80%. So we noticed that the ITO thin film with low resistivity and high transmittance was prepared by FTS at room temperature.

  • PDF

Layout of Long-pass-edge Filter Correspond with the Optical Transmission in Crystalline (수정체 광투과에 대응하는 LPE Filter 설계)

  • Kim, YongGeun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.57-63
    • /
    • 1999
  • The optical absorption and transmittance of cow' crystalline were measured by spectrophotometer in the 200~800nm wavelength regions. The optical absorptions of crystalline composed of a high absorption band in the UV-A, UV-B, and appeared the light transmittance edge in the 400nm wavelength region, and completely transmitted without the absorption in the high wavelength regions than 400nm. Also, the optical absorption and transmittance had no temperature dependence. The optical transmittance spectrum of crystalline concord with the thin film structure of $n_0/(0.5H)L(LH)^6(0.5H)/n_s$ and $n_0{\mid}(0.5LH0.5L)^kL/1.25{\mid}4.0$ of long-pass edge filter form. In the artificial crystalline and inter lens layout, long-pass edge filter layout can UV cut off.

  • PDF

Property of Spin-sprayed ZnO Film on PC Substrate (스핀 스프레이법으로 PC 기판에 제작한 산화아연 박막의 특성)

  • Hoong, Jeongsoo;Matsushita, Nobuhiro;Katsumata, Ken-ichi;Park, Yongseo;Kim, Kyunghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.27-30
    • /
    • 2018
  • In this study, ZnO film was deposited on polycarbonate substrate by spin-spray method at low substrate temperature of $85^{\circ}C$. Surface morphology of ZnO films was changed by adding citrate from rod to dense structure. As-deposited ZnO film indicated high transmittance above 80%. In case of the resistivity, as-deposited ZnO film had high resistivity due to the existence of organic substance in the film. However, organic substance was removed and resistivity was decreased to $3.9{\times}10^{-2}{\Omega}{\cdot}cm$, after UV irradiation.

Effects of Film Thickness and Post-Annealing Temperature on Properties of the High-Quality ITO Thin Films with RF Sputtering Without Oxygen (산소 유입 없이 RF 스퍼터로 증착한 고품질 ITO 박막의 두께와 열처리 온도에 따른 박막의 특성 변화)

  • Jiha Seong;Hyungmin Kim;Seongmin Shin;Kyunghwan Kim;Jeongsoo Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.253-260
    • /
    • 2024
  • In this study, ITO thin films were fabricated on a glass substrate at different thicknesses without introducing oxygen using RF sputtering system. The structural, electrical, and optical properties were evaluated at various thicknesses ranging from 50 to 300 mm. As the thickness of deposited ITO thin film become thicker from 50 to 100 mm, carrier concentration, mobility, and band gap energy also increased while the resistivity and transmittance decreased in the visible light region. When the film thickness increased from 100 to 300 mm, the carrier concentration, mobility, and band gap energy decreased while the resistivity and transmittance increased. The optimum electrical properties were obtained for the ITO film 100 nm. After optimizing the thickness, the ITO thin films were post-annealed at different temperatures ranging from 100 to 300℃. As the annealing temperature increased, the ITO crystal phase became clearer and the grain size also increased. In particular, the ITO thin film annealed at 300℃ indicated high carrier concentration (4.32 × 1021 cm-3), mobility (9.01 cm2/V·s) and low resistivity (6.22 × 10-4 Ω·cm). This means that the optimal post-annealing temperature is 300℃ and this ITO thin film is suitable for use in solar cells and display application.

Properties of $TiO_2$ thin film coated on $SnO_2$ thin films by sol-gel method (Sol-gel 법에 의해 $SnO_2$계 박막위에 코팅된 $TiO_2$ 박막의 특성)

  • Lim, Tae-Young;Cho, Hye-Mi;Kim, Jin-Ho;Hwang, Jong-Hee;Hwang, Hae-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.256-261
    • /
    • 2009
  • Hydrophilic and transparent $TiO_2$ thin film was fabricated by sol-gel method and the properties of contact angle, surface morphology, and transmittance were measured. In addition, surfactant Tween 80 was used for increasing the hydrophilic property of thin film. When the contents of Tween 80 in $TiO_2$ solution was 0, 10, 30, 50wt%, the contact angles of $TiO_2$ thin film were $41.4^{\circ}$, $18.2^{\circ}$, $16.0^{\circ}$, $13.2^{\circ}$, respectively. Fabricated $TiO_2$ thin film showed the photocatalytic property that decomposed methylene blue and decreased the absorbance of solution after UV irradiation. $TiO_2$ thin films fabricated with the solution of 30 wt% Tween 80 were deposited on glass (bare), antimony tin oxide (ATO), fluorine tin oxide (FTO), indium tin oxide (ITO) coated glass substrates, and the contact angle and transmittance of thin film was measured. The contact angles of thin films deposited on four substrates were $16.2\sim27.1^{\circ}$ and was decreased to the range of $13.2\sim17.6^{\circ}$ after UV irradiation, Especially, the thin films coated on ATO and FTO glass substrate showed high transmittance of 74.6% in visible range, respectively, and low transmittance of 54.2% and 40.4% in infrared range, respectively.

Transparent ITO/Ag/i-ZnO Multilayer Thin Film enhances Lowing Sheet Resistance

  • Kim, Sungyoung;Kim, Sangbo;Heo, Jaeseok;Cho, Eou-Sik;Kwon, Sang Jik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.187-187
    • /
    • 2015
  • The past thirty years have seen increasingly rapid advances in the field of Indium Tin Oxide (ITO) transparent thin film.[1] However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials.[2] So far, in order to overcome this disadvantage, we show a transparent ITO/Ag/i-ZnO multilayer thin film electrode can be the solution. In comparison with using amount of ITO as a transparent conducting material, intrinsic-Zinc-Oxide (i-ZnO) based on ITO/Ag/i-ZnO multilayer thin film showed cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report ITO/Ag/i-ZnO multilayer thin film properties by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\square}$ at same visible light transmittance.(minimal point $5.2{\Omega}/{\square}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.

  • PDF

Effect of SiO2/ITO Film on Energy Conversion Efficiency of Dye-sensitized Solar Cells

  • Woo, Jong-Su;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.303-307
    • /
    • 2015
  • Multilayered films of ITO (In2O3:SnO2 = 9:1)/SiO2 were deposited on soda-lime glass by RF/DC magnetron sputtering at 500℃ to improve the energy conversion efficiency of dye-sensitized solar cells (DSSCs). The light absorption of the dye was improved by decrease in light reflectance from the surface of the DSSCs by using an ITO film. In order to estimate the optical characteristics and compare them with experimental results, a simulation program named EMP (essential macleod program) was used. EMP results revealed that the multilayered thin films showed high transmittance (approximate average transmittance of 79%) by adjusting the SiO2 layer thickness. XRD results revealed that the ITO and TiO2 films exhibited a crystalline phase with (400) and (101) preferred orientations at 2 θ = 26.24° and 35.18°, respectively. The photocurrent-voltage (I-V) characteristics of the DSSCs were measured under AM 1.5 and 100 mW/cm2 (1 sun) by using a solar simulator. The DSSC fabricated on the ITO film with a 0.1-nm-thick SiO2 film showed a Voc of 0.697 V, Jsc of 10.596 mA/cm2 , FF of 66.423, and calculated power conversion efficiency (ηAM1.5) of 5.259%, which was the maximum value observed in this study.

Effects of High Pressure Homogenization on Physicochemical Properties of Starch Films (고압균질처리가 전분필름의 물성에 미치는 영향)

  • Kang, Eun-Jung;Lee, Jae-Kwon
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.70-74
    • /
    • 2011
  • The effects of high pressure homogenization (microfluidization) on physicochemical properties of normal maize and oxidized maize starch film were studied. The molecular dispersibility of amlyose and amylopectin and the disintegration of granular structure had a marked effect on the physicochemical properties of starch films. The high pressure homogenized starch films showed increased solubility and transmittance due to the absence of gelatinized starch granules. The tensile strength of starch film increased significantly with decreasing oxygen permeability after high pressure homogenization, indicating that starch molecules were more uniformly and fully dispersed during the film formation. As a result, a clear starch film with improved mechanical properties was obtained after high pressure homogenization due to the increased interactions between the uniformly dispersed starch molecules.