• Title/Summary/Keyword: High-transmittance film

Search Result 399, Processing Time 0.03 seconds

Characteristics of ITO Films Grown on an Oxygen Plasma Treated Glass Substrate (유리기판에 O2 플라즈마 표면처리 후 제작된 ITO 박막의 특성)

  • Chae, Hong-Chol;Hong, Joo-Wha
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.545-548
    • /
    • 2012
  • The optical and electronic properties of Indium Tin Oxide (ITO) thin films deposited on a RF-plasma treated glass substrate were investigated by X-Ray Photoelectron Spectroscopy (XPS), Ultra-violet Photoelectron Spectroscopy (UPS), Reflected Electron Energy Loss Spectroscopy (REELS). The modification of glass substrates was carried out by varying the time of the plasma surface treatment in an oxygen atmosphere. The focus of this research was to examine how the optical and electronic properties of ITO thin films change with the plasma treatment time. The surface energy increased since the carbon bonds were removed from the surface after the glass substrate received the surface treatment. The ITO thin films produced on the glass substrate with surface treatment showed that the high optical transmittance was approximately 85%. The measured band gap energy was as high as 3.23 eV when the plasma treatment time was 60 s and the work function after the treatment was increased by 0.5 eV in comparison to that before the treatment of 60 s. The ITO thin film exhibited an excellent sheet resistance of $2.79{\Omega}/{\Box}$. We found that the optical and electronic properties of ITO thin films can be improved by RF-plasma surface treatment.

Correlation between optimized thicknesses of capping layer and thin metal electrode for efficient top-emitting blue organic light-emitting diodes

  • Hyunsu Cho;Chul Woong Joo;Byoung-Hwa Kwon;Chan-mo Kang;Sukyung Choi;Jin Wook Sin
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1056-1064
    • /
    • 2023
  • The optical properties of the materials composing organic light-emitting diodes (OLEDs) are considered when designing the optical structure of OLEDs. Optical design is related to the optical properties, such as the efficiency, emission spectra, and color coordinates of OLED devices because of the microcavity effect in top-emitting OLEDs. In this study, the properties of top-emitting blue OLEDs were optimized by adjusting the thicknesses of the thin metal layer and capping layer (CPL). Deep blue emission was achieved in an OLED structure with a second cavity length, even when the transmittance of the thin metal layer was high. The thin metal film thickness ranges applicable to OLEDs with a second microcavity structure are wide. Instead, the thickness of the thin metal layer determines the optimized thickness of the CPL for high efficiency. A thinner metal layer means that higher efficiency can be obtained in OLED devices with a second microcavity structure. In addition, OLEDs with a thinner metal layer showed less color change as a function of the viewing angle.

Characteristics of SiO2 Based Asymmetric Multilayer Thin Films for High Performance Flexible Transparent Electrodes (고성능 유연 투명전극용 SiO2 기반 비대칭 다층 박막의 특성)

  • Jeong, Ji-Won;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Oxide (SiO2)/Metal(Ag)/Oxide(SiO2, ITO, ZnO) multilayer films were fabricated using a magnetron sputtering technique at room temperature on Si (p-type, 100) and a glass substrate. The electrical and optical properties of the asymmetric multilayer films depended on the thickness of the mid-layer film and the type of oxide in the bottom layer. As the metal layer becomes thicker, the sheet resistance decreases. However, the transmittance decreases when the metal layer exceeds a threshold thickness of approximately 10~12 nm. In addition, the sheet resistance and transmittance change according to the type of oxide in the bottom layer. If the oxide has a large resistivity, the overall sheet resistance increases. In addition, the anti-reflection effect changes according to the refractive index of the oxide material. The optical and electrical properties of multilayer films were investigated using an ultraviolet visible (UV-Vis) spectrophotometer and a 4-point probe, respectively. The optimum structure is SiO2 (30 nm)/Ag (10 nm)/ZnO (30 nm) multilayer, with the highest FOM value of 7.7×10-3 Ω-1.

Characterization of post-annealed Si QDs in $Si_{1-x}C_x$ thin film by RF co-sputtering (RF Co-sputtering법에 의한 $Si_{1-x}C_x$ 박막 증착 및 후 열처리에 따른 양자점 박막 특성 분석)

  • Moon, Ji-Hyun;Kim, Hyun-Jong;Cho, Jun-Sik;Chang, Bo-Yun;Ko, Chang-Hyun;Park, Sang-Hyun;Yun, Kyoung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.33-36
    • /
    • 2009
  • 고효율 양자점 태양전지를 위하여 $Si_{1-x}C_x$ 박막 내에 Si 양자점을 형성한 박막을 제작하고 그 특성을 분석하였다. $Si_{1-x}C_x$ 박막은 Si과 C target을 co-sputtering하여 증착하였다. C target의 RF power를 변화시켜 $Si_{1-x}C_x$ 박막의 조성비를 조절하였으며, 조성비는 auger electron spectroscopy로 정량적으로 측정하였다. 이 박막들을 질소 분위기에서 후 열처리하여 high resolution transmittance electron microscopy로 확인한 결과 박막 내에 2~10nm 크기의 양자점이 형성된 것을 관측할 수 있었다. 이 양자점은 transmittance electron diffraction과 grazing incident X-ray diffraction을 통해 Si 양자점과 SiC 양자점이 형성되었음을 알 수 있었다. Raman 측정 결과에서는 후 열처리한 $Si_{1-x}C_x$ 박막의 조성비가 증가할 수록 crystal Si peak의 shift가 증가함을 알 수 있었고, 이를 통해 양자점의 크기도 함께 계산할 수 있었다. Fourier transform infrared spectroscopy을 통해 후 열처리한 Si1-xCx 박막의 양자점의 형성 원인을 추정하였다.

  • PDF

Electronic, Optical and Electrical Properties of Nickel Oxide Thin Films Grown by RF Magnetron Sputtering

  • Park, Chanae;Kim, Juhwan;Lee, Kangil;Oh, Suhk Kun;Kang, Hee Jae;Park, Nam Seok
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.72-76
    • /
    • 2015
  • Nickel oxide (NiO) thin films were grown on soda-lime glass substrates by RF magnetron sputtering method at room temperature (RT), and they were post-annealed at the temperatures of $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$ for 30 minutes in vacuum. The electronic structure, optical and electrical properties of NiO thin films were investigated using X-ray photoelectron spectroscopy (XPS), reflection electron energy spectroscopy (REELS), UV-spectrometer and Hall Effect measurements, respectively. XPS results showed that the NiO thin films grown at RT and post annealed at temperatures below $300^{\circ}C$ had the NiO phase, but, at $400^{\circ}C$, the nickel metal phase became dominant. The band gaps of NiO thin films post annealed at temperatures below $300^{\circ}C$ were about 3.7 eV, but that at $400^{\circ}C$ should not be measured clearly because of the dominance of Ni metal phase. The NiO thin films post-annealed at temperatures below $300^{\circ}C$ showed p-type conductivity with low electrical resistivity and high optical transmittance of 80% in the visible light region, but that post-annealed at $400^{\circ}C$ showed n-type semiconductor properties, and the average transmittance in the visible light region was less than 42%. Our results demonstrate that the post-annealing plays a crucial role in enhancing the electrical and optical properties of NiO thin films.

Flexible and Transparent CuO/Cu/CuO Electrodes Grown on Flexible PET Substrate by Continuous Roll-to-roll Sputtering for Touch Screen Panels Cells

  • Kim, Dong-Ju;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.217.2-217.2
    • /
    • 2014
  • We prepared a flexible and transparent CuO/Cu/CuO multilayer electrodes on a polyethylene terephthalate (PET) substrate using a specially designed roll-to-roll sputtering system at room temperature for GFF-type touch screen panels (TSPs). By the continuous roll-to-roll sputtering of the CuO and Cu layer, we fabricated a flexible CuO(150nm)/Cu(150nm)/CuO(150nm) multilayer electrodes with a sheet resistance of $0.289{\Omega}/square$, resistivity of $5.991{\times}10^{-23}{\Omega}-cm$, at the optimized condition without breaking the vacuum. To investigate the feasibility of the CuO/Cu/CuO multilayer as a transparent electrode for GFF-type TSPs, we fabricated simple GFF-type TSPs using the diamond patterned CuO/Cu/CuO electrode on PET substrate as function of mesh line width. Using diamond patterned CuO/Cu/CuO electrode of mesh line $5{\mu}m$ with sheet resistance of 38 Ohm/square, optical transmittance of 90% at 550 nm and an average transmittance of 89% at wavelength range from 380 to 780 nm, we successfully demonstrated GFF-type touch panel screens (TPSs). The successful operation of GFF-type TPSs with CuO/Cu/CuO multilayer electrodes indicates that the CuO/Cu/CuO multilayer is a promising transparent electrode for large-area capacitive-type TPSs due to its low sheet resistance and high transparency.

  • PDF

A Study on the Annealed Properties of ITO Thin Film Deposited by RF-superimposed DC Reactive Magnetron Sputtering (RF/DC 동시인가 마그네트론 스퍼터링 방법으로 증착된 ITO 박막의 열처리 특성 연구)

  • Moon, Jin-Wook;Kim, Dong-Won
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.3
    • /
    • pp.117-124
    • /
    • 2007
  • The ITO films were deposited on glass substrates by RF-superimposed dc reactive magnetron sputtering and were annealed in $N_2$ vacuum furnace with temperatures in the range of $403K{\sim}573K$ for 30 minutes. Electrical, optical and structural properties of ITO films were examined with varying annealing temperatures from 403 K to 573 K. The resistivity of as-deposited ITO films was $5.4{\times}10^{-4}{\Omega}cm$ at the sputter conditions of applied RF/DC power of 200/200 W, $O_{2}$ flow of 0.2 seem and Ar flow of 0.2 seem. As a result of annealing in the temperature range of $403K{\sim}573K$, the crystallization occurred at 423 K that is lower than the crystallization temperature caused by a conventional sputtering method. And the resistivity decreased from $5.4{\times}10^{-4}{\Omega}cm\;to\;2.3{\times}10^{-4}{\Omega}cm$, the carrier concentration and mobility of ITO films increased from $4.9{\times}10^{20}/cm^3\;to\;6.4{\times}10^{20}/cm^3$, from $20.4cm^2/Vsec\;to\;41.0cm^2/Vsec$, respectively. The transmittance of ITO films in visible became higher than 90% when annealed in the temperature range of $423K{\sim}573K$. High quality ITO thin films made by RF-superimposed dc reactive magnetron sputtering and annealing in $N_2$ vacuum furnace will be applied to transparent conductive oxides of the advanced flat panel display.

Electrical and Optical Properties of ITZO Thin Films Deposited by RF Magnetron Sputtering (고주파 마그네트론 스퍼터링법에 의해 제작된 ITZO (indium tin zinc oxide) 박막의 전기적 및 광학적 특성)

  • Seo, Jin-Woo;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1873-1878
    • /
    • 2013
  • ITZO ($In_2O_3$ : $SnO_2$ : ZnO = 90wt.% : 5wt.% : 5wt.%) thin films were fabricated on glass substrates (Eagle 2000) at room temperature with various working pressures (1~7 mTorr) by RF magnetron sputtering. The influence of the working pressure on the structural, electrical, and optical properties of the ITZO thin films were investigated. The XRD and FESEM results showed that all ITZO thin films are amorphous structures with very smooth surfaces regardless of the working pressure. Amorphous ITZO thin films deposited at 3 mTorr showed the best properties, such as a low resistivity, high transmittance, and figure of merit of $3.08{\times}10^{-4}{\Omega}{\cdot}cm$, 81 %, and $10.52{\times}10^{-3}{\Omega}^{-1}$, respectively.

A Study of Electrical and Optical Properties of AZO/Ni/SnO2 Tri-layer Films (AZO/Ni/SnO2 적층박막의 전기적, 광학적 특성 연구)

  • Song, Young-Hwan;Cha, Byung-Chul;Cheon, Joo-Yong;Eom, Tae-Young;Kim, Yu-Sung;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.1
    • /
    • pp.13-16
    • /
    • 2017
  • $SnO_2$ single layer films and 2 nm thick Ni thin film intermediated $AZO/Ni/SnO_2$ trilayer films were deposited on glass substrate at room temperatures by RF and DC magnetron sputtering and then the optical and electrical properties of the films were investigated to enhance opto-electrical performance of $SnO_2$ single layer films. As deposited $SnO_2$ films show the optical transmittance of 81.8% in the visible wavelength region and a resistivity of $1.2{\times}10^{-2}{\Omega}cm$, while $AZO/Ni/SnO_2$ films show a lower resistivity of $5.8{\times}10^{-3}{\Omega}cm$ and an optical transmittance of 77.1% in this study. Since $AZO/Ni/SnO_2$ films show the higher figure of merit than that of the $SnO_2$ single layer films, it is supposed that the $AZO/Ni/SnO_2$ films can assure high opto-electrical performance for use as a transparent conducting oxide in various display applications.

Electrical and Optical Properties of BZO Thin Films Deposited by RF Magnetron Sputtering with Various Annealing Temperatures (열처리 온도에 따른 BZO 박막의 전기적 및 광학적 특성)

  • Seong-Jun Kang;Yang-Hee Joung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.47-52
    • /
    • 2024
  • The effects of annealing temperature on the optical and electrical properties of BZO thin films, grown on glass substrate, have been investigated. Analysis of the XRD shows that regardless of the annealing temperature, all BZO thin films indicate the c-axis orientation. The full width of half maximum (FWHM) decreases from 1.65 to 1.07° as the annealing temperature increases from 400 to 600℃. The average transmittance in the visible light region showed a high value of 85% without significantly affecting the annealing temperature. The results of Hall effect measurements indicate that the carrier concentration and mobility increased and the resistivity decreased as the annealing temperature increased. The resistivity and the carrier concentration of the BZO thin films annealed 600℃ were 9.75×10-2 Ω·cm and 4.21×1019 cm-3 respectively, showing the best value. The optimization of deposition and annealing conditions will certainly make the BZO thin films promising materials for the application to the next generation of optoelectronic devices.