• 제목/요약/키워드: High-throughput nucleotide

검색결과 75건 처리시간 0.026초

Gut microbial assessment among Hylobatidae at the National Wildlife Rescue Centre, Peninsular Malaysia

  • Roberta Chaya Tawie Tingga;Millawati Gani;Abd Rahman Mohd-Ridwan;Nor Rahman Aifat;Ikki Matsuda;Badrul Munir Md-Zain
    • Journal of Veterinary Science
    • /
    • 제25권5호
    • /
    • pp.65.1-65.11
    • /
    • 2024
  • Importance: Recent developments in genetic analytical techniques have enabled the comprehensive analysis of gastrointestinal symbiotic bacteria as a screening tool for animal health conditions, especially the endangered gibbons at the National Wildlife Rescue Centre (NWRC). Objective: High-throughput sequencing based on 16S ribosomal RNA genes was used to determine the baseline gut bacterial composition and identify potential pathogenic bacteria among three endangered gibbons housed in the NWRC. Methods: Feces were collected from 14 individuals (Hylobates lar, n = 9; Hylobates agilis, n = 4; and Symphalangus syndactylus, n = 1) from March to November 2022. Amplicon sequencing were conducted by targeting V3-V4 region. Results: The fecal microbial community of the study gibbons was dominated by Bacteroidetes and Firmicutes (phylum level), Prevotellaceae and Lachnospiraceae/Muribaculaceae (family level), and Prevotella (and its subgroups) (genera level). This trend suggests that the microbial community composition of the study gibbons differed insignificantly from previously reported conspecific or closely related gibbon species. Conclusions and Relevance: This study showed no serious health problems that require immediate attention. However, relatively low alpha diversity and few potential bacteria related to gastrointestinal diseases and streptococcal infections were detected. Information on microbial composition is essential as a guideline to sustain a healthy gut condition of captive gibbons in NWRC, especially before releasing this primate back into the wild or semi-wild environment. Further enhanced husbandry environments in the NWRC are expected through continuous health monitoring and increase diversity of the gut microbiota through diet diversification.

The Construction of a Chinese Cabbage Marker-assisted Backcrossing System Using High-throughput Genotyping Technology

  • Kim, Jinhee;Kim, Do-Sun;Lee, Eun Su;Ahn, Yul-Kyun;Chae, Won Byoung;Lee, Soo-Seong
    • 원예과학기술지
    • /
    • 제35권2호
    • /
    • pp.232-242
    • /
    • 2017
  • The goal of marker-assisted backcrossing (MAB) is to significantly reduce the number of breeding generations required by using genome-based molecular markers to select for a particular trait; however, MAB systems have only been developed for a few vegetable crops to date. Among the types of molecular markers, SNPs (single-nucleotide polymorphisms) are primarily used in the analysis of genetic diversity due to their abundance throughout most genomes. To develop a MAB system in Chinese cabbage, a high-throughput (HT) marker system was used, based on a previously developed set of 468 SNP probes (BraMAB1, Brassica Marker Assisted Backcrossing SNP 1). We selected a broad-spectrum TuMV (Turnip mosaic virus) resistance (trs) Chinese cabbage line (SB22) as a donor plant, constructing a $BC_1F_1$ population by crossing it with the TuMV-susceptible 12mo-682-1 elite line. Foreground selection was performed using the previously developed trsSCAR marker. Background selection was performed using 119 SNP markers that showed clear polymorphism between donor and recipient plants. The background genome recovery rate (% recurrent parent genome recovery; RPG) was good, with three of 75 $BC_1F_1$ plants showing a high RPG rate of over 80%. The background genotyping result and the phenotypic similarity between the recurrent parent and $BC_1F_1$ showed a correlation. The plant with the highest RPG recovery rate was backcrossed to construct the $BC_2F_1$ population. Foreground selection and background selection were performed using 169 $BC_2F_1$ plants. This study shows that, using MAB, we can recover over 90% of the background genome in only two generations, highlighting the MAB system using HT markers as a highly efficient Brassica rapa backcross breeding system. This is the first report of the application of a SNP marker set to the background selection of Chinese cabbage using HT SNP genotyping technology.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • 원예과학기술지
    • /
    • 제35권2호
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

Early-onset epileptic encephalopathies and the diagnostic approach to underlying causes

  • Hwang, Su-Kyeong;Kwon, Soonhak
    • Clinical and Experimental Pediatrics
    • /
    • 제58권11호
    • /
    • pp.407-414
    • /
    • 2015
  • Early-onset epileptic encephalopathies are one of the most severe early onset epilepsies that can lead to progressive psychomotor impairment. These syndromes result from identifiable primary causes, such as structural, neurodegenerative, metabolic, or genetic defects, and an increasing number of novel genetic causes continue to be uncovered. A typical diagnostic approach includes documentation of anamnesis, determination of seizure semiology, electroencephalography, and neuroimaging. If primary biochemical investigations exclude precipitating conditions, a trial with the administration of a vitaminic compound (pyridoxine, pyridoxal-5-phosphate, or folinic acid) can then be initiated regardless of presumptive seizure causes. Patients with unclear etiologies should be considered for a further workup, which should include an evaluation for inherited metabolic defects and genetic analyses. Targeted next-generation sequencing panels showed a high diagnostic yield in patients with epileptic encephalopathy. Mutations associated with the emergence of epileptic encephalopathies can be identified in a targeted fashion by sequencing the most likely candidate genes. Next-generation sequencing technologies offer hope to a large number of patients with cryptogenic encephalopathies and will eventually lead to new therapeutic strategies and more favorable long-term outcomes.

A Study on Transcriptome Analysis Using de novo RNA-sequencing to Compare Ginseng Roots Cultivated in Different Environments

  • Yang, Byung Wook
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.5-5
    • /
    • 2018
  • Ginseng (Panax ginseng C.A. Meyer), one of the most widely used medicinal plants in traditional oriental medicine, is used for the treatment of various diseases. It has been classified according to its cultivation environment, such as field cultivated ginseng (FCG) and mountain cultivated ginseng (MCG). However, little is known about differences in gene expression in ginseng roots between field cultivated and mountain cultivated ginseng. In order to investigate the whole transcriptome landscape of ginseng, we employed High-Throughput sequencing technologies using the Illumina HiSeqTM2500 system, and generated a large amount of sequenced transcriptome from ginseng roots. Approximately 77 million and 87 million high-quality reads were produced in the FCG and MCG roots transcriptome analyses, respectively, and we obtained 256,032 assembled unigenes with an average length of 1,171 bp by de novo assembly methods. Functional annotations of the unigenes were performed using sequence similarity comparisons against the following databases: the non-redundant nucleotide database, the InterPro domains database, the Gene Ontology Consortium database, and the Kyoto Encyclopedia of Genes and Genomes pathway database. A total of 4,207 unigenes were assigned to specific metabolic pathways, and all of the known enzymes involved in starch and sucrose metabolism pathways were also identified in the KEGG library. This study indicated that alpha-glucan phosphorylase 1, putative pectinesterase/pectinesterase inhibitor 17, beta-amylase, and alpha-glucan phosphorylase isozyme H might be important factors involved in starch and sucrose metabolism between FCG and MCG in different environments.

  • PDF

Clinical utility of chromosomal microarray analysis to detect copy number variants: Experience in a single tertiary hospital

  • Park, Hee Sue;Kim, Aryun;Shin, Kyeong Seob;Son, Bo Ra
    • Journal of Genetic Medicine
    • /
    • 제18권1호
    • /
    • pp.31-37
    • /
    • 2021
  • Purpose: To summarize the results of chromosomal microarray analysis (CMA) for copy number variants (CNVs) detection and clinical utility in a single tertiary hospital. Materials and Methods: We performed CMA in 46 patients over the course of two years. Detected CNVs were classified into five categories according to the American College of Medical Genetics and Genomics guidelines and correlated with clinical manifestations. Results: A total of 31 CNVs were detected in 19 patients, with a median CNV number per patient of two CNVs. Among these, 16 CNVs were classified as pathogenic (n=3) or likely pathogenic (LP) (n=11) or variant of uncertain significance (n=4). The 16p11.2 deletion and 16p13.11 deletion classified as LP were most often detected in 6.5% (3/46), retrospectively. CMA diagnostic yield was 24.3% (9/37 patients) for symptomatic patients. The CNVs results of the commercial newborn screening test using next generation sequencing platforms showed high concordance with CMA results. Conclusion: CMA seems useful as a first-tier test for developmental delay with or without congenital anomalies. However, the classification and interpretation of CMA still remained a challenge. Further research is needed for evidence-based interpretation.

오가노이드를 활용한 약물 검색 플랫폼 (Drug Discovery Platform Using Organoids)

  • 맹주은;김순찬;송명현;정나현;구자록
    • Journal of Digestive Cancer Research
    • /
    • 제10권2호
    • /
    • pp.82-91
    • /
    • 2022
  • Gastrointestinal cancer accounts for one-third of the overall cancer occurrence worldwide. Pancreatic ductal adenocarcinoma (PDAC) is a type of gastrointestinal cancer that is known to be one of the most fatal among all cancer types, with a 5-year survival rate of less than 8%. Chemotherapy combined with surgical resection is its probable curative option. However, surgery is accessible for only 10-15% of patients diagnosed with PDAC. Organoids show self-organizing capacities and resemble the original tissue in terms of morphology and function. Organoids can also be cultured with high effectiveness from tumor tissues derived from each patient, making them an extremely fitting model for translational uses and improving personalized cancer medicine. Enhancing drug screening platforms is necessary to apply personalized medicinebased organoids in clinical settings.

Association of polymorphisms in Pit-1 gene with growth and feed efficiency in meat-type chickens

  • Jin, Sihua;He, Tingting;Yang, Lei;Tong, Yucui;Chen, Xingyong;Geng, Zhaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권11호
    • /
    • pp.1685-1690
    • /
    • 2018
  • Objective: The pituitary specific transcription factor-1 (Pit-1) gene is responsible for pituitary development and growth hormone expression and is regarded as a pivotal candidate gene for growth and production in chickens. Therefore, the aim of this study was to investigate the association of Pit-1 polymorphisms with growth and feed efficiency traits in yellow meat-type chickens. Methods: In the present study, five single nucleotide polymorphisms (SNPs) of Pit-1 were selected and genotyped by high-throughput matrix-assisted laser desorption-ionization time-of-flight mass spectrometry in 724 meat-type chickens. Results: Association analysis showed that rs13687126 of Pit-1 was strongly associated with body weight gain (BWG) and feed intake (FI) (p<0.05), and that rs13687128 was significantly correlated with body weight at 70 days of age (BW70), BWG and feed conversion ratio (FCR) (p<0.05). SNP rs13905622 was strongly related to BW70 and FCR (p<0.05). Furthermore, birds with the GG genotype of rs13687126 had larger BWG and FI than those with the AG genotype (p<0.05). Individuals with the TT genotype of rs13687128 were significantly higher BW70 and BWG than those of the CT and CC genotype, while FCR was just the opposite (p<0.05). For rs13905622, the AA chickens showed strongly larger BW70 and lower FCR compared with the AT and TT chickens (p<0.05). Additionally, an ACA haplotype based on rs13687126, rs13687128, and rs13905622 had significant effects on BW70 and FCR (p<0.05). Conclusion: Our studies thus provide crucial evidence for the relationship between polymorphisms of Pit-1 and growth and feed efficiency traits which may be useful for meat-type chicken breeding programs.

폐암 억제유전자 RRM1의 단일염기다형성 검사를 위한 PCR-RFLP법과 Real-Time PCR법의 유용성 비교 (Comparison of PCR-RFLP and Real-Time PCR for Allelotyping of Single Nucleotide Polymorphisms of RRM1, a Lung Cancer Suppressor Gene)

  • 정주연;김미란;손준광;정종필;오인재;김규식;김영철
    • Tuberculosis and Respiratory Diseases
    • /
    • 제62권5호
    • /
    • pp.406-416
    • /
    • 2007
  • 연구배경: 단일염기다형성(Single nucleotide polymorphism, SNP)은 인간의 유전자 서열 1000염기에 1개 빈도로 발견되어 인간은 대략 300만개의 유전자 다형성을 가지고 있다. 이 유전자 다형성의 조합결과로 인간의 개체 간 특성들이 결정되는 것으로 이해되고 있다. 이러한 다형성들의 조합양상에 따라 특이 질환에 대한 유전자 감수성 또한 달라지게 되므로 최근에는 많은 질환들과 유전자 다형성들과의 상관관계를 보는 연구들도 활발하게 진행되고 있다. 이러한 SNP분석은 큰 집단을 대상으로 진행되어 지므로 적은 비용으로 정확하게 그리고 대용량으로 분석할 수 있는 방법이 필요하다. 방 법: 대상 환자 89명의 genomic DNA를 가지고서 promotor상에 위치한 -37과 -524 염기부위에서 유전자 다형성을 보이는 것으로 보고되어져 있는 RRM1(ribonucleotide reductase M1) 유전자를 대상으로 PCR-RFLP(polymerase chain reaction-restriction fragment length polymorphism)와 real-time PCR(RTPCR, TaqMan probe assay)을 동시에 시행한 후 각각의 결과를 비교 분석하였다. 결 과: 대상 DNA 89예 중 -37에서는 2예(2.17%), -524에서는 15예(16.26%)가 서로 다른 양상을 보였다. 결과 차이를 보인 샘플 17예를 대상으로 직접 염기서열 분석을 시행하여 본 결과, 17예 모두 RT-PCR에서 확인되었던 결과와 일치함을 확인할 수 있었다. 추가 샘플 138예를 대상으로 RT-PCR을 2회 연속 실행하여 genotyping을 해 본 결과 98%이상의 높은 일치율을 보였으며, 그중 10예를 무작위로 골라 직접 염기서열 분석을 시행하여 본 결과, 역시 100%일치, 높은 정확도를 보였고 이는 in-tube assay 방식으로 샘플의 오염을 최소화 할 수 있었으며 72 well based system(Corbett Research)을 이용함으로 1회 유전자 증폭반응을 통해 많은 검체를 한 번에 확인할 수 있어 매우 빠른 검사방법 이었다. 결 론: 큰 집단을 대상으로 다량의 SNP를 분석하기 위한 실험 방법으로는 RT-PCR이 신속하면서도 정확한 결과를 얻을 수 있는 방법으로 사료된다.

Analytical Tools and Databases for Metagenomics in the Next-Generation Sequencing Era

  • Kim, Mincheol;Lee, Ki-Hyun;Yoon, Seok-Whan;Kim, Bong-Soo;Chun, Jongsik;Yi, Hana
    • Genomics & Informatics
    • /
    • 제11권3호
    • /
    • pp.102-113
    • /
    • 2013
  • Metagenomics has become one of the indispensable tools in microbial ecology for the last few decades, and a new revolution in metagenomic studies is now about to begin, with the help of recent advances of sequencing techniques. The massive data production and substantial cost reduction in next-generation sequencing have led to the rapid growth of metagenomic research both quantitatively and qualitatively. It is evident that metagenomics will be a standard tool for studying the diversity and function of microbes in the near future, as fingerprinting methods did previously. As the speed of data accumulation is accelerating, bioinformatic tools and associated databases for handling those datasets have become more urgent and necessary. To facilitate the bioinformatics analysis of metagenomic data, we review some recent tools and databases that are used widely in this field and give insights into the current challenges and future of metagenomics from a bioinformatics perspective.