• Title/Summary/Keyword: High-temperature phase stability

Search Result 224, Processing Time 0.022 seconds

Study on thermal and UV stability of Liquid Crystal Display for Projection TV Application (프로젝션 TV 적용을 위한 액정 디스플레이의 열적 및 UV 안전성에 관한 연구)

  • Choi, Sung-Ho;Hwang, Jeoung-Yeon;Bae, Yu-Han;Lee, Whee-Won;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.287-288
    • /
    • 2005
  • In this study, we have investigated electro-optical characteristics of thermal and UV stressed TN cells on the rubbed polyimide surface. Mono-domain alignments of thermal stressed TN cells over temperature of liquid crystal isotropic phase were almost same that of no thermal stressed TN cells. Also, threshold voltage and response time of thermal stressed TN cells were same that of no thermal stressed TN cells. Finally, the residual DC voltage of the thermal stressed TN cell on the polyimide surface show decrease of characteristics as increasing thermal stress time. Therefore, thermal stability of TN cell was decreased by high thermal stress for the long times.

  • PDF

Study for Thermal Stability of Liquid Crystal Device (액정 소자의 열적 안전성에 관한 연구)

  • 이상극;황정연;서대식;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.439-442
    • /
    • 2004
  • In this study, we investigated about electrooptics characteristic of three kinds of TN cell on the polyimide surface. Monodomain alignments of thermal stressed TN cell over temperature of liquid crystal isotropic phase were almost the same as that of no thermal stressed TN cells. However, the thermal stressed TN cells have many defects. Also, threshold voltage and response time of thermal stressed TN cells show the same performances as no thermal stressed TN cells. There were little changes of value in these TN cells. However, transmittances of TN cells on the polyimide surface decrease with increasing thermal stress time. Finally, the residual DC voltage of the thermal stressed TN cell on the polyimide surface shows decrease of characteristics as increasing thermal stress time. Therefore, the thermal stability of TN cell was decreased by high thermal stress for the long times.

Design of Respiratory Sensor System for polysomnography using Thermocouple (Polysomnography를 위한 열전대 호흡센서 시스템의 설계)

  • 우용규;정도언;박광석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.121-123
    • /
    • 2000
  • Changes in breathing pattern and apnea both can be !he result of sleep disorders. The focus of this paper is to develop methodologies to monitor the breathing pattern and to detect apnea. An accurate recording of the respiratory phase can be carried out with different methods. One of these methods is the use of a thermocouple, which reacts to the variation in air temperature, placed in the nose and mouth of the patient. The K-type thermocouple was used because it has high reliability, thermo-stability, and good corrosion resistance. And also, it has a considerable long time constant that gives a low cut-off frequency, well below the respiratory frequency and thereby causing a large phase difference. The result showed that timing of respiration was accurately obtained with the AD595, amplifier for K-type thermocouple.

  • PDF

Study of Pixel Isolated PSCOF Mode

  • Kim, Dong-Woo;Shin, Sung-Tae;Jung, Jong-Wook;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.399-402
    • /
    • 2005
  • We have studied the Pixel Isolated Phase Separated Composite Organic Film (PI-PSCOF). The PI-PSCOF can be made by the anisotropic phase separation between Ferroelectric Liquid Crystals and Pre-polymer materials by irradiating the UV with optimizing its intensity and time. In the technology, the FLC molecules are isolated in pixels where FLCs are surrounded by the inter-pixel vertical polymer walls and the horizontal polymer films on the upper substrate. The good merits of this technology are fast response time, and good mechanical and thermal stability against external high pressure and temperature. We will compare the results obtained from FLC, PSCOF, and PI-PSCOF modes by using the electro-optic measurement and x-ray scattering, and mechanical method. We believe that the PI-PSCOF technology can be a best candidate for future Flexible Display Applications.

  • PDF

Preparation of ZrB2 by Self-propagating Synthesis and Its Characteristics (자전연소합성법에 의한 ZrB2 세라믹분말합성 및 NaCl의 영향)

  • Kim, Jinsung;Nersisyan, Hayk;Won, Changwhan
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.255-258
    • /
    • 2014
  • Zirconium boride is an artificial or which is rarely found in the nature. $ZrB_2$ is popular in the hard material industry because it has a high melting point, excellent mechanical properties and chemical stability. There are two known methods to synthesize $ZrB_2$. The first involves direct reaction between Zr and B, and the second is by reduction of the metal halogen. However, these two methods are known to be unsuitable for mass production. SHS(Self-propagating High-temperature Synthesis) is an efficient and economic method for synthesizing hard materials because it uses exothermic reactions. In this study, $ZrB_2$ was successfully synthesized by subjecting $ZrO_2$, Mg and $B_2O_3$ to SHS. Because of the high combustion temperature and rapid combustion, in conjunction with the stoichiometric ratio of $ZrO_2$, Mg and $B_2O_3$; single phase $ZrB_2$ was not synthesized. In order to solve the temperature problem, Mg and NaCl additives were investigated as diluents. From the experiments it was found that both diluents effectively stabilized the reaction and combustion regime. The final product, made under optimum conditions, was single-phase $ZrB_2$ of $0.1-0.9{\mu}m$ particle size.

Effects of Different Precursors on the Surface Mn Species Over $MnO_x/TiO_2$ for Low-temperature SCR of NOx with $NH_3$

  • Kim, Jang-Hoon;Yoon, Sang-Hyun;Lee, Hee-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.29.1-29.1
    • /
    • 2011
  • The selective catalytic reduction (SCR) of $MnO_x$ with $NH_3$ is an effective method for the removal of $MnO_x$ from stationary system. The typical catalyst for this method is $V_2O_5-WO_3(MoO_3)/TiO_2$, caused by the high activity and stability. However, This catalyst is active within $300{\sim}400^{\circ}C$ and occurs the pore plugging from the deposition of ammonium sulfate salts on the catalysts surface. It needs to locate the SCR unit after the desulfurizer and electrostatic precipitator without reheating of the flue gas as well as deposition of dust on the catalyst. The manganese oxides supported on titania catalysts have attracted interest because of its high SCR activity at low temperature. The catalytic activity of $MnO_x/TiO_2$ SCR catalyst with different manganese precursors have investigated for low-temperature SCR in terms of structural, morphological, and physico-chemical analyses. The $MnO_x/TiO_2$ were prepared from three different precursors such as manganese nitrate, manganese acetate (II), and manganese acetate (III) by the sol-gel method and then it calcinated at $500^{\circ}C$ for 2 hr. The structural analysis was carried out to identify the phase transition and the change intensity of catalytic activity by various manganese precursors was analyzed by FT-IR and Raman spectroscopy. These different precursors also led to various surface Mn concentrations indicated by SEM. The Mn acetate (III) tends to be more suppressive the crystalline phase (rutile), and it has not only smaller particle size, but also better distributed than the others. It was confirmed that the catalytic activity of MA (III)-$MnO_x/TiO_2$ was the highest among them.

  • PDF

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.

Novel stability indicating high-performance liquid chromatography method for the separation and simultaneous quantification of acalabrutinib and its impurities in pharmaceutical formulation

  • Venu Gopal Kamani;Sujatha M;Guna Bhushana Daddala
    • Analytical Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • This study reports for the first time about a stability indicating RP-HPLC method for qualitative and quantitative determination of acalabrutinib in bulk and dosage form and in presence its impurities 1, 2 and 3. The chromatographic separation was carried on Zorbax XDB-C18 (250×4.6 mm; 5 µ id) as stationary phase, Phosphate buffer pH 6.4 and methanol 80:20 (v/v) as mobile phase at a flow rate of 1.0 mL/min, UV detection was carried at wavelength of 238 nm and the analysis was completed with a run time of 15 min. In these conditions the retention time of acalabrutinib and its impurities 1, 2 and 3 was observed to be 3.50, 4.83, 8.40 and 9.93 min respectively. The method was validated for system suitability, range of analysis, precision, specificity, stability and robustness. Spiked recovery at 50 %, 100 % and 150 % was carried for both standard and impurities and the acceptable % recovery of 98-102 was observed for acalabrutinib and both impurities studied and the % RSD in each spiked level was found to be less than 2. Stability tests were done through exposure of the analyte solution to five different stress conditions i.e expose to 1N hydrochloric acid, 1 N sodium hydroxide, 3 % peroxide, 80 ℃ temperature and UV radiation at 254 nm. In all the degradation condition, standard drug acalabrutinib was detected along with both the impurities studied and the degradation products were successfully separated. In the formulation analysis there is no other chromatographic detection of other impurities and formulation excipients. Hence the developed method was found to be suitable for the quantification of acalabrutinib and can separate and analyse impurities 1 and 2.

The Growth Characteristics of ${\beta}\;-FeSi_2$ as IR-sensor Device for Detecting Pollution Material : The Usage of the Ferrocene-Plasma

  • Kim, Kyung-Soo;Jung, II-Hyun
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • As IR-sensor for detecting pollution material, the iron silicide has a fit band gap, high physicochemical stability at high temperature and good acid resistance. The growing film was formed with the Fe-Si bond and the organic compound because plasma resolved the injected precursors into various active species. In the Raman scattering spectrum, the Fe-Si vibration mode showed at 250 {TEX}$cm^{-1}${/TEX}. The FT-IR peak indicated that the various organic compounds were deposited on the films. The iron silicide was epitaxially grown to β-phase by the high energy of plasma. The lattice structure of films had [220]/[202] and [115]. The thickness of the films increased with the flow rate of silane. But rf-power increased with decreasing the thickness. The optical gap energy and the band gap were shown about 3.8 eV and 1.182∼1.194 eV. The band gap linearly increased and the formula was below: {TEX}$E_g^{dir}${/TEX}= 8.611×{TEX}$10^{-3}N_{D}${/TEX}+1.1775

  • PDF

Study of Fabrication and Improvement of Mechanical Properties of Mg-based Inorganic Fiber using Reflux Process and Silica Coating

  • Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.195-200
    • /
    • 2019
  • Whisker-type magnesium hydroxide sulfate hydrate ($5Mg(OH)_2{\cdot}MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH), is used in filler and flame-retardant composites based on its hydrate phase and its ability to undergo endothermic dehydration in fire conditions, respectively. In general, the length of whiskers is determined according to various synthetic conditions in a hydrothermal reaction with high temperature (${\sim}180^{\circ}C$). In this work, high-quality 513 MHSH whiskers are synthesized by controlling the concentration of the raw material in ambient conditions without high pressure. Particularly, the concentration of the starting material is closely related to the length, width, and purity of MHSH. In addition, a ceramic-coating system is adopted to enhance the mechanical properties and thermal stability of the MHSH whiskers. The physical properties of the silica-coated MHSH are characterized by an abrasion test, thermogravimetric analysis, and transmission electron microscopy.