• Title/Summary/Keyword: High-temperature deformation

Search Result 837, Processing Time 0.03 seconds

High Temperature Deformation Behavior of Beta-gamma TiAl Alloy (Beta-gamma TiAl 합금의 고온변형거동)

  • Kim, J.S.;Kim, Y.W.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.429-433
    • /
    • 2006
  • High Temperature deformation behavior of newly developed beta-gamma TiAl alloy was investigated in this study. The optimum processing condition was investigated with the aid of Dynamic Materials Model (DMM). Processing maps representing the efficiency of power dissipation for microstructural evolution and instability were constructed utilizing the results of hot compression test at temperatures ranging from $1000^{\circ}C$ to $1200^{\circ}C$ and strain rate ranging from $10^{-4}/s$ to $10^2/s$. The Artificial Neural Network (ANN) simulation was adopted to consider the deformation heating. With the help of processing map and microstructural analysis, the optimum processing condition was presented and the role of $\beta$ phase was also discussed in this study.

  • PDF

Effect of Strain Rate on Microstructure Formation Behavior of M1 Magnesium Alloy During High-temperature Deformation (변형속도에 따른 M1 마그네슘 합금의 고온변형 중 미세조직 형성 거동)

  • Lee, Kyujung;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • In this study, microstructure evolution and crystallographic orientation are investigated under various deformation conditions in M1 magnesium alloy. M1 magnesium ingot was rolled at 673 K with the rolling reduction of 30%. The compression test specimens were machined out from rolled plate, and then the specimens were annealed at 823 K for 1h. Uniaxial compression tests were conducted at 723 K and under the strain rate ranging from $5.0{\times}10^{-4}s^{-1}$ to $5.0{\times}10^{-2}s^{-1}$ up to a true strain of -1.0. For observation of crystal orientation distribution, EBSD measurement was performed. Occurrence of the dynamic recrystallization and grain boundary migration were confirmed in all case of the specimens. The distribution of the grains is not uniformed in the experimental conditions.

The Effect of B addition on the High Temperature Behavior of Low Thermal Expansion Fe-29%Ni-17%Co Kovar Alloy (저열팽창성 Fe-29%Ni-17%Co 코바 합금의 고온 변형 거동에 미치는 B 첨가의 영향)

  • Kwon, S.H.;Park, J.H.;Kim, M.C.;Lee, K.A.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.491-492
    • /
    • 2008
  • The effect of B on the hot ductility of Fe-29Ni-17Co Kovar alloy and the mechanism of high temperature deformation behavior were investigated. Hot-tensile test was carried out at the temperature range of $900^{\circ}C-1200^{\circ}C$. Optical microscopy and scanning electron microscopy were used to investigate the microstructure and fracture during hot deformation. The hot ductility of Kovar alloy was drastically increased with the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range($900^{\circ}C$).

  • PDF

Real-time SCR-HP(Selective catalytic reduction - high pressure) valve temperature collection and failure prediction using ARIMA (ARIMA를 활용한 실시간 SCR-HP 밸브 온도 수집 및 고장 예측)

  • Lee, Suhwan;Hong, Hyeonji;Park, Jisoo;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.62-67
    • /
    • 2021
  • Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.

Temperature Dependence on Elastic Constant of SiC Ceramics (SiC 세라믹스 탄성률의 온도 의존성)

  • Im, Jong-In;Park, Byoung-Woo;Shin, Ho-Yong;Kim, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.491-497
    • /
    • 2010
  • In this paper, we employed the classical molecular dynamics simulations using Tersoff's potential to calculate the elastic constants of the silicon carbide (SiC) crystal at high temperature. The elastic constants of the SiC crystal were calculated based on the stress-strain characteristics, which were drawn by the simulation using LAMMPS software. At the same time, the elastic constants of the SiC ceramics were measured at different temperatures by impulse excitation testing (IET) method. Based on the simulated stress-strain results, the SiC crystal showed the elastic deformation characteristics at the low temperature region, while a slight plastic deformation behavior was observed at high strain over $1,000^{\circ}C$ temperature. The elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa by increasing the temperature from RT to $1,250^{\circ}C$. When compared to the experimental values of the SiC ceramics, the simulation results, which are unable to obtain by experiments, are found to be very useful to predict the stress-strain behaviors and the elastic constant of the ceramics at high temperature.

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

Hot Deformation Behavior of AISI 4340 using Constitutive Model and Processing Map (구성 모델과 공정 지도를 이용한 AISI 4340강의 고온 변형 거동)

  • Kim, Keunhak;Jung, Minsu;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.187-196
    • /
    • 2017
  • High temperature flow behaviors of AISI 4340 steel were investigated using isothermal compression tests under the temperature range from 850 to $1100^{\circ}C$ and a strain rate from 0.01 to $10s^{-1}$. The flow stress decreased with increasing compression temperature and decreasing strain rate. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrheniustyped equation with the Zener-Hollomon parameter was used to simulate the hot deformation behavior of AISI 4340 steel. The modification of the Zener-Hollomon parameter and lnA parameter resulted in the improvement of the calculation accuracy of the proposed constitutive model compared with the experimental flow curves. In addition, the process map of AISI 4340 steel was proposed. The instable process condition for hot deformation was predicted and its reliability was verified with the experimental observation.

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys (자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

Progressive Inelastic Deformation Characteristics of Cylindrical Structure with Plate-to-Shell Junction Under Moving Temperature Front

  • Lee, Hyeong-Yeon;Kim, Jong-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • A study on the progressive inelastic deformation behavior of the 316 L stainless steel cylindrical structure with plate-to-shell junction under moving temperature front was carried out by structural test and analysis. The structural test intends to simulate the thermal ratcheting behavior occurring at the reactor baffle of the liquid metal reactor as free surface of hot sodium pool moves up and down under plant transients. The thermal ratchet load that heats the specimen up to 550$^{\circ}C$ was applied repeatedly and residual deformation was measured. The thermal ratcheting test was carried out with two types of cylindrical structures, one with plate to-shell junction and the other without the junction to investigate the effects of the geometric discontinuities on the global ratcheting deformation. The temperature distributions of the test specimens were measured and were used for the ratcheting analysis. The ratchet deformations were analyzed with the constitutive equation of the non-linear combined hardening model. The analysis results were in good agreement with those of the structural tests.

Deformation and Stress Distribution of Discontinuous Precast Concrete Track Slab : II. Stress Distribution (불연속 프리캐스트 콘크리트궤도 슬래브의 변형과 응력 분포 : II. 응력 분포)

  • Lee, Dong Hoon;Kim, Ki Hyun;Jang, Seung Yup;Zi, Goangseup
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.637-648
    • /
    • 2017
  • In this paper, the effects of initial built-in deformation and temperature deformation on the stress distribution of discontinuous precast concrete track slab under train load were examined. According to the results, when train load is put on a precast concrete slab with initial built-in deformation and deformation due to temperature gradient, the maximum tensile stresses develop at the upper side of slab in the slab center, edge center and corner of shear pocket; the stress distribution is different from that of the case under train load only. Therefore, to accurately predict the actual weak points and failure modes, one should calculate the stress under train load considering the initial built-in and temperature deformation of the slab.