• Title/Summary/Keyword: High-temperature deformation

Search Result 835, Processing Time 0.03 seconds

Analysis of Thermal Deformation of Carbon-fiber Reinforced Polymer Matrix Composite Considering Viscoelasticity (점탄성을 고려한 탄소 섬유강화 복합재의 열 변형 유한요소 해석)

  • Jung, Sung-Rok;Kim, Wie-Dae;Kim, Jae-Hak
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.174-181
    • /
    • 2014
  • This study describes viscoelasticity analysis of carbon-fiber reinforced polymer matrix composite material. One of the most important problem during high temperature molding process is residual stress. Residual stress can cause warpage and cracks which can lead to serious defects of the final product. For the difference in thermal expansion coefficient and change of resin property during curing, it is difficult to predict the final deformed shape of carbon-fiber reinforced polymer matrix composite. The consideration of chemical shrinkage can reduce the prediction errors. For this reason, this study includes the viscoelasticity and chemical shrinkage effects in FE analysis by creating subroutines in ABAQUS. Analysis results are compared with other researches to verify the validity of the subroutine developed, and several stacking sequences are introduced to compare tested results.

Creep Characteristics Verification of FE Model for SnPb Solder (SnPb 솔더에 대한 유한요소모델의 크리프 특성 검증)

  • Han, Chang-Woon;Park, No-Chang;Oh, Chul-Min;Hong, Won-Sik;Song, Byeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • The heat sink system for a main board in a network server computer is built on printed circuit board by an anchor structure, mounted by eutectic SnPb solder. The solder creeping is caused by a constant high temperature condition in the computer and it eventually makes fatal failures. The FE model is used to calculate the stress and predict the life of soldered anchor in the computer. In the model, Anand constitutive equation is employed to simulate creep characteristics of solder. The creep test is conducted to verify and calibrate the solder model. A special jig is designed to mitigate the flexure of printed circuit board and to get the creep deformation of solder only in the test. Test results are compared with analysis and calibration is conducted on Anand model's constants. Precise life prediction of soldered anchor in creep condition can be performed by this model.

Fracture Behaviour of Lubricants in ABS Terpolymer (ABS 중에 첨가된 저분자 화합물의 파단 거동에 미치는 영향)

  • Don, Yoon-Seung;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.878-888
    • /
    • 1994
  • In order to investigate the fracture behavior of ABS terpolymer under the tension and impact load, varing the content of rubber, molecular weight of SAN, content and kinds of lubricant, tension speed, the mechanical properties were measured and SEM pictures of fracture area were taken. Under the tension, the tensile strength increased as rubber content and lubricant content decreased, while molecular weight and tension speed increased. The deformation of area near fracture site did not occur as rubber content, tension speed and molecular weight decreased and liquid lubricant was used. And in the shape of fracture seemed phase seperation. Under the impact load, the notched izod impact strength increased as rubber content, molecular weight, ambient temperature and lubricant content increased. In the SEM picture, the strength was high white the fracture surface was small.

  • PDF

Microstructure Control, Forming Technologies of Mg Alloys and Mg Scrap Recycling (마그네슘합금의 조직제어(組織制御)와 성형가공(成形加工) 및 스크랩 리싸이클링 기술(技術))

  • Shim, Jae-Dong;Lee, Dong-Hui
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.69-79
    • /
    • 2011
  • Recently, magnesium alloys are in the spotlight as a promising materials in the fields of automobile parts and electronic appliances due to their merits representing light weight, high specific strength, damping property, shielding of electromagnetic wave and so on. However, magnesium alloys show a poor formability at room temperature because magnesium has HCP crystal structure with limited slip planes and strong basal texture is formed during plastic deformation process such as rolling and extrusion. Therefore, many R&D efforts have been paid for improvement of formability through grain refinement, texture control and various forming technologies. This paper is giving an overview about recent achievements on control of microstructures, forming technologies and magnesium scrap recycling.

A Study on Applicability of SP Creep Testing for Measurement of Creep Properties of Zr-2.5Nb Alloy (Zr-2.5Nb 합금의 크리프 물성 측정을 위한 SP 크리프 시험의 적용성에 대한 연구)

  • Park, Tae-Gyu;Ma, Young-Wha;Jeong, Ill-Seok;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2003
  • The pressure tubes made of cold-worked Zr-2.5Nb alloy are subjected to creep deformation during service period resulting in changes to their geometry such as longitudinal elongation, diameter increase and sagging. To evaluate integrity of them, information on the material creep property of the serviced tubes is essential. As one of the methods with which the creep property is directly measured from the serviced components, small punch(SP) creep testing has been considered as a substitute for the conventional uniaxial creep testing. In this study, applicability of the SP creep testing to Zr-2.5Nb pressure tube alloy was studied particularly by measuring the power law creep constants, A, n. The SP creep test has been successfully applied fur other high temperature materials which have isotropic behavior. Since the Zr-2.5Nb alloy has anisotropic property, applicability of the SP creep testing can be limited. Uniaxial creep tests and small punch creep tests were conducted with Zr-2.5Nb pressure tube alloy along with finite element analyses. Creep constants obtained by each test method are compared. It was argued that the SP creep test result gave results reflecting material properties of both directions. But the equations derived in the previous study for isotropic materials need to be modified. Discussions were made fur future research directions for application of the SP creep testing to Zr-2.5Nb tube alloy.

High Temperature Creep Characteristics Evaluation for Degraded Heat Resistance Steel of Power Plant by Mini-Specimen (미소시험편에 의한 재질열화된 내열강의 고온 크리프 특성 평가)

  • Lyu, Dae-Young;Baek, Seung-Se;Yu, Hyo-Sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.429-435
    • /
    • 2003
  • In this study the new creep test using miniaturized specimen(10${\times}$10${\times}$0.5 ㎣) was performed to evaluate the creep characteristics for degraded materials of 2.25Cr-1Mo steel. For this creep test, the artificially aged materials for 330 hrs and 1820hrs at $630^{\circ}C$ were used. The test temperatures applied for the creep deformation of miniaturized specimens was X$630^{\circ}C$ and the applied loads were between 45 kg∼80 kg. After creep test, macro- and microscopic observation were conducted by the scanning electron microscope(SEM). The creep curves depended definitely on applied load and microstructure and showed the three stages of creep behavior like uniaxial tensile creep curves. The load exponents of virgin, 330 hrs and 1820 hrs materials based on creep rate showed 14.8, 9.5 and 8.3 at $550^{\circ}C$ respectively, The 1820 hrs material showed the lowest load exponent and this behavior was also observed in the case of load exponent based on creep rupture time. In contrast to virgin material which exhibited fined dimple fractography, a lot of carbides like net structure and voids were observed on the fractography of degraded materials.

WELDING-INDUCED BUCKLING INSTABILITIES IN THIN PLATES

  • Han, Myoung-Soo;Tsai, Chon-Liang
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.661-667
    • /
    • 2002
  • Welding-induced buckling distortion is one of the most problematic concerns in both design and fabrication of welded thin-plate structures. This paper deals with experimental and numerical results of the welding-induced longitudinal and/or buckling distortion occurring in welding of 6mm-thick AH36 high strength steel plates. Effects of the heat input and the plate size on the distortion were experimentally evaluated for square plates. Bead-on-plate welding was performed with the submerged arc welding process along the middle line of plate specimens. Experimental results showed that the longitudinal distortion made a single curvature in the plate, and the distortion magnitude along the weld centerline was proportional to the heat input and the plate size. The experimental results were used to examine the validity of the numerical simulation procedure for welding-induced distortion where the longitudinal distortion mode and magnitude were numerically quantified. Three-dimensional, large deformation, welding simulations were performed for selected weld models. Numerical results of the distortion mode and magnitude were in a good agreement with experimental ones. Depending on the presence of halting the distortion growth during the cooling cycle of welding, the condition discriminating buckling distortion from longitudinal distortion was established. Eigenvalue analyses were performed to check the buckling instability of tested plates with different sizes subjected to different heat inputs. The perturbation load pattern for the analysis was extracted from longitudinal inherent strain distributions. Critical buckling curve from the eigenvalue analyses revealed that the buckling instability is manifested when plate size or heat input increases.

  • PDF

Low Temperature Co-firing of Camber-free Ceramic-metal Based LED Array Package (세라믹-금속 기반 LED 어레이 패키지의 저온동시소성시 휨발생 억제 연구)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • Ceramic-metal based high power LED array package was developed via thick film LTCC technology using a glass-ceramic insulation layer and a silver conductor patterns directly printed on the aluminum heat sink substrate. The thermal resistance measurement using thermal transient tester revealed that ceramic-metal base LED package exhibited a superior heat dissipation property to compare with the previously known packaging method such as FR-4 based MCPCB. A prototype LED package sub-module with 50 watts power rating was fabricated using a ceramic-metal base chip-on-a board technology with minimized camber deformation during heat treatment by using partially covered glass-ceramic insulation layer design onto the aluminum heat spread substrate. This modified circuit design resulted in a camber-free packaging substrate and an enhanced heat transfer property compared with conventional MCPCB package. In addition, the partially covered design provided a material cost reduction compared with the fully covered one.

A Petrological Study on the Southwestern Contact Zone of the Boeun Granodiorite, Ogcheon Zone (보은화강섬록암(報恩花崗閃綠岩) 서남부(西南部) 접촉대(接觸帶)에 관(關)한 암석학적(岩石學的) 연구(硏究))

  • Lee, Dai Sung;Park, Jong Sim
    • Economic and Environmental Geology
    • /
    • v.14 no.2
    • /
    • pp.55-76
    • /
    • 1981
  • Southwestern contact zone of the Boeun granodiorite occurs near the thrust fault between the Ogcheon Group and Majeonri Limestone Formation. Ogcheon Group, metasediments composed of the Munjuri Formation, Changri Formation, and unconformably overlying Hwanggangri Formation, belongs to greenschist facies of regional metamorphism accompanied with deformation of two fold axes, $N10^{\circ}E$ and $N45-65^{\circ}E$ directions. Basic metamorphic rocks occurring in the Changri and Limestone Formations are the meta-basalts and meta-diabases of tholeiitic basalt series. The meta-basalts intruded in the Changri Formation as sills, whereas the meta-diabases in the Changri and Limestone Formations as stocks in appearance. They are considered to have emplaced before the formation of two fold axes and related with the thrust fault, based on the geologic setting of the area. The metamorphic facies are identified to be greenschist facies to epidote-amphibolite facies for the meta-basalt, and epidote-amphibolite facies for the meta-diabases. It is interpreted that such a variety of facies was related from the combination of earlier deuteric alteration and later regional metamorphism. The metasediments in southwestern contact zont of the Boeun granodiorite which is a product of later syntectonic intrusion of middle Jurassic in age, show pyroxene-hornfels facies near the contact and amphibole-horenfels facies away from the contact to the mineral zoning in the contact metamorphic aureole of the Limestone Formation, based on the paragenetic analysis of mineral assemblages. The Limestone in the area appears to be considerably $SiO_2-CaO-MgO-CO_2-H_2O$ can be adopted to evaluate equilibrium conditions of the mineral assemblages in each mineral zone. It is revealed that a temperature gradient was existed accross the contact aureole ranging from the higher igneous side to lower sedimentary side, whereas no clear trend of $XCO_2$ variation appears but high mole fraction. The tremolite diopside-quartz-calcite assemblages occurs in common through the most mineral zones of contact aureole that is in good agreement with the equivalent reaction curve which extends over a wide range of $T-XCO_2$ conditions.

  • PDF

An Ultra-precision Lathe for Large-area Micro-structured Roll Molds (대면적 미세패턴 롤 금형 가공용 초정밀 롤 선반 개발)

  • Oh, Jeong Seok;Song, Chang Kyu;Hwang, Jooho;Shim, Jong Youp;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1303-1312
    • /
    • 2013
  • We report an ultra-precision lathe designed to machine micron-scale features on a large-area roll mold. The lathe can machine rolls up to 600 mm in diameter and 2,500 mm in length. All axes use hydrostatic oil bearings to exploit the high-precision, stiffness, and damping characteristics. The headstock spindle and rotary tooling table are driven by frameless direct drive motors, while coreless linear motors are used for the two linear axes. Finite element method modeling reveals that the effects of structural deformation on the machining accuracy are less than $1{\mu}m$. The results of thermal testing show that the maximum temperature rise at the spindle outer surface is approximately $0.5^{\circ}C$. Finally, performance evaluations of the error motion, micro-positioning capability, and fine-pitch machining demonstrate that the lathe is capable of producing optical-quality surfaces with micron-scale patterns with feature sizes as small as $20{\mu}m$ on a large-area roll mold.