Browse > Article
http://dx.doi.org/10.7844/kirr.2011.20.1.069

Microstructure Control, Forming Technologies of Mg Alloys and Mg Scrap Recycling  

Shim, Jae-Dong (Korea Institute of Science and Technology Information)
Lee, Dong-Hui (Korea Institute of Science and Technology Information)
Publication Information
Resources Recycling / v.20, no.1, 2011 , pp. 69-79 More about this Journal
Abstract
Recently, magnesium alloys are in the spotlight as a promising materials in the fields of automobile parts and electronic appliances due to their merits representing light weight, high specific strength, damping property, shielding of electromagnetic wave and so on. However, magnesium alloys show a poor formability at room temperature because magnesium has HCP crystal structure with limited slip planes and strong basal texture is formed during plastic deformation process such as rolling and extrusion. Therefore, many R&D efforts have been paid for improvement of formability through grain refinement, texture control and various forming technologies. This paper is giving an overview about recent achievements on control of microstructures, forming technologies and magnesium scrap recycling.
Keywords
magnesium alloy; grain refinement; texture; forming technology; scrap recycling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 茂木徹一, 2008: 小形薄肉加工できるマグネシム合金の半凝固半溶融鑄造, 工業材料, 56(7), pp. 62-67.
2 左藤雅彦, 2007: Mg合金の板壓延とその利用, 塑性と加工, 48(556), pp. 373-378.
3 A. J. Den Bakker A. J. et al., 2004: Process and Alloy Development for Hydrostatic Extrusion of magnesium, Proc. 6th Inter. Conf. on Mag. Alloys & Appl., Wiley-VCH Verglag, 2004, pp. 324-330.
4 村井 勉, 2007: マグネシウム合金の壓出し架空と形材への 利用, 塑性と加工, 48(556), pp. 379-383.
5 J. Y. Byun et al., 1998 : Effect of Alloying Elements on the Iron Solubility of Magnesium alloys, J. Kor. Inst. Met. & Tater. 36(10), pp. 1715-1721.
6 심재동, 변지영 : 경량부품소재의 Recycling기술개발, KIST보고서 2000-G-AM-01-C-007.
7 東 健司, 2009: NEDOプログラム, マグネシウム鍛造部 材技術開發プロジェクト, の目指す新展開, 輕金屬, 59(10), pp. 576-588.
8 左海哲夫, 2009: マグネシム合金の壓延による組織制御, 塑性と加工, 50(578), pp. 201-205.
9 Yu Yoshida at al, 2005: Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working. Sci. Tech. Adv. Mater, 6, pp. 185-194.   DOI   ScienceOn
10 Jie Xing et al., 2004: Formation of fine grained structure in a alloy AZ31 during multi-directional forging with decreasing deformation temperature, J. Japan Inst. Light Met. 54(11), pp. 527-531.   DOI   ScienceOn
11 水沼 晉, 2009: ねじり壓出しにおける大ひずみ加工特性と 結晶粒微細化, 塑性と加工, 50(578), pp. 186-191.
12 高津正秀, 2009: マグネシム合金板の成形性評價と成形性 改善の取組み, 塑性と加工, 50(576), pp. 13-17.
13 小山克己, 小松原俊雄, 2009: 溫間異周速壓延による高r値 のアルミニウム薄板の創製, 塑性と加工, 50(578), pp. 211-215.
14 異周速壓延法: http://unit.aist.go.jp/mrisus/ci/group/microcg/dsr.html
15 中浦祐典, 渡部 晶, 大堀 紘一, 2008: 異周速壓延によるマ グネシム合金板の結晶粒微細化と壓延加工性向上, 金屬, 78(4), pp. 341-346.
16 Yasumasa Chino et al., 2006: Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet, Material Science Engineering, A441, 2006, pp. 349356.   DOI   ScienceOn
17 Yasumasa Chino et al., 2006: Press formability of a rolled AZ31 Mg alloy sheet with controlled texture, Materials Letters, 60, pp.173-176.   DOI   ScienceOn
18 심재동, 2007: KISTI 유망기술 100선(가공성형성이 우수한 마그네슘 합금), KISTI 발간, pp. 1-52.
19 附田之欣, 2007: マグネシウム合金のチクソモルディグ, 塑性と加工, 48(556), pp. 396-400.