• Title/Summary/Keyword: High-temperature XRD

Search Result 1,011, Processing Time 0.031 seconds

Effect of dehydride atmosphere on Hydrogen concentration of Tantalum (탈수소화 분위기가 탄탈륨 분말 수소농도에 미치는 영향 연구)

  • Lee, Ji-eun;Yoon, Jin-Ho;Lee, Chan Gi
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • Hydride-dehydride process for efficient recycling of tantalum (Ta) is used for manufacturer of Ta powder. In case of metal powder, Impurities as like nitride, oxygen, hydrogen is decreased of physical properties. For manufacture of Ta powder, control of theses impurities is important. In this study, to decreased of impurities on Ta powder using HDH process optimize dehydride condition. Dehydration behavior of Ta is depended on temperature, time, and atmosphere. Phase transition of Ta hydride is analyzed by X-ray diffraction (XRD). Concentration of hydrogen is decreased with temperature increased. At high temperature, concentration of hydrogen in Ta is similar according to time increased. Size and morphology of powder is not observed after dehydride. Ta powder, which is less than 20 um, concentration of hydrogen under 800 ppm is obtain.

Property of the HPHT Diamonds Using Stack Cell and Zn Coating with Pressure (적층형 셀과 아연도금층을 이용한 고온고압 합성다이아몬드의 압력변화에 따른 물성 연구)

  • Shen, Yun;Song, Oh-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.167-172
    • /
    • 2012
  • Fine diamond powders are synthesized with a 420 ${\phi}$ cubic press and stack-cell composed of Kovar ($Fe_{54}Ni_{29}Co_{17}$) (or Kovar+7 ${\mu}m$-thick Zn electroplated) alloy and graphite disks. The high pressure high temperature (HPHT) process condition was executed at $1500^{\circ}C$ for 280 seconds by varying the nominal pressure of 5.7~10.6 GPa. The density of formation, size, shape, and phase of diamonds are determined by optical microscopy, field emission scanning electron microscopy, thermal gravimetric analysis-differential thermal ammnlysis (TGA-DTA), X-ray diffraction (XRD), and micro-Raman spectroscopy. Through the microscopy analyses, we found that 1.5 ${\mu}m$ super-fine tetrahedral diamonds were synthesized for Zn coated Kovar cell with whole range of pressure while ~3 ${\mu}m$ super-fine diamond for conventional Kovar cell with < 10.6 GPa. Based on $750^{\circ}C$ exothermic reaction of diamonds in TGA-DTA, and characteristic peaks of the diamonds in XRD and micro-Raman analysis, we could confirm that the diamonds were successfully formed with the whole pressure range in this research. Finally, we propose a new process for super-fine diamonds by lowering the pressure condition and employing Zn electroplated Kovar disks.

Morphology Changes of Hydroxyapatite in Different Hydrolysis Conditions (가수분해 조건에 따른 수산화인회석의 형상변화)

  • Choi, Kyoung-Rim;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.350-356
    • /
    • 2018
  • Hydroxyapatite has been used for biomaterials since it has high biocompatibility. In this study, c-plane oriented hydroxyapatite was synthesized by hydrolysis of dicalcium phosphate intermediate by controlling temperature, concentration and pH. In basic condition, rod-like hydroxyapatite crystals were aggregated to form irregular particles in low concentration and plate-like particles exposed c-plane of hydroxyapatite crystal were obtained in high concentration, causing difference of 3 mV in zeta potential. Physicochemical properties of product were characterized by XRD, SEM, FT-IR, zeta potential measurement.

Epitaxial growth of oxide films using miscut substrates (Miscut된 기판을 이용할 산화물 박막의 에피 성장)

  • Bu Sang Don
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.145-149
    • /
    • 2004
  • We have grown piezoelectric oxide films by RF magnetron sputtering using miscut substrates. Films were Brown on(001) $SrTiO_3$ substrates with miscut angles from 0 to 8 degrees toward the (100) direction. Films on high miscut substrates (>$4^{\circ}$) showed almost the pure perovskite phase in x-ray diffraction and were nearly stoichiometric. In contrast, films on exact (001) $SrTiO_3$ contained a high volume fraction of pyrochlore phases. A film on an $8^{\circ}$ miscut substrate exhibits a polarization hysteresis loop with a remnent polarization of 20$\mu$C/$\textrm{cm}^2$ at room temperature.

Preparation and Characterization of β-C3N4 in Presence of Seed Carbon Nitride Films Deposited by Laser-Electric Discharge Method

  • Kim, J.I.;Zorov, N.B.;Burdina, K.P
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure was developed for preparing bulk carbon nitride crystals from a polymeric $\alpha$ -C$_3$N$\_$4.2/ at high pressure and temperature in the presence of seeds of crystalline carbon nitride films prepared by a high voltage discharge plasma combined with pulsed laser ablation of graphite target. The samples were evaluated by x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, Auger electron spectroscopy (AES), secondary-ion mass spectrometry (SIMS), scanning electron microscopy (SEM) and x-ray diffraction (XRD). Notably, XPS studies of the film composition before and after thermobaric treatments demonstrate that the nitrogen composition in $\alpha$ -C$_3$N$\_$4.2/ material initially containing more than 58% nitrogen decreases during the annealing process and reaches a common, stable composition of ~45%. The thermobaric experiments were performed at 10-77 kbar and 350-1200 $\^{C}$.

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF EQUIATOMIC AND NON-EQUIATOMIC TiMoTaNbV HIGH ENTROPY ALLOYS PREPARED USING VACUUM ARC REMELTING

  • SEONGI LEE;KWANGMIN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1311-1315
    • /
    • 2020
  • This study investigates the microstructures and the mechanical properties of equiatomic Ti20Mo20Ta20Nb20V20 and non-equiatomic Ti40Mo15Ta15Nb15V15 and Ti60Mo10Ta10Nb10V10 HEAs using X-ray diffraction (XRD) analysis, field emission scanning electron microscope (FE-SEM), and micro-Vickers hardness test. The specimens were fabricated using the vacuum arc remelting (VAR) process and homogenized at a temperature of 1300℃ for 4 h in a vacuum atmosphere. The determined thermodynamic parameters, Ω ≥ 1.1, δ ≤ 6.6%, and VEC < 6.87, suggested that the HEAs consisted of BCC solid solutions. XRD patterns of all the HEAs displayed single BCC phases. The difference in the solidification rate led to the micro-segregation associated with the elements Ta and Mo enriched in the dendrite arms and the elements V and Ti in the inter-dendritic regions. The HEA specimens showed a decrease in hardness with higher concentration of Ti element because the intrinsic hardness of Ti is lower as compared to the intrinsic hardness of Nb and Mo.

Effect of Al on Structural and Magnetic Characteristics of CoCrFeNiMnAlx High Entropy Alloys

  • Majid Tavoosi;Ali Ghasemi;Gholam Reza Gordani;Mohammad Reza Loghman Estarki
    • Korean Journal of Materials Research
    • /
    • v.33 no.3
    • /
    • pp.95-100
    • /
    • 2023
  • This research examines the effect of adding aluminum on the structural, phasic, and magnetic properties of CoCrFe NiMnAlx high-entropy alloys. To this aim, the arc-melt process was used under an argon atmosphere for preparing cast samples. The phasic, structural, and magnetic properties of the samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrational magnetometry (VSM) analyses. Based on the results, the addition of aluminum to the compound caused changes in the crystalline structure, from FCC solid solution in the CoCrFeNiMn sample to CoCrFeNiMnAl BBC solid solution. It was associated with changes in the magnetic property of CoCrFeNiMnAlx high-entropy alloys, from paramagnetic to ferromagnetic. The maximum saturation magnetization for the CoCrFeNiMnAl casting sample was estimated to be around 79 emu/g. Despite the phase stability of the FCC solid solution with temperature, the solid solution phase formed in the CrCrFeNiMnAl high-entropy compound was not stable, and changed into FCC solid solution with temperature elevation, causing a reduction in saturation magnetization to about 7 emu/g.

Redispersion of Sintered PtSn Catalyst by Oxygen Treatment (소결된 백금주석 촉매의 산소 처리에 의한 재분산 연구)

  • Choi, Yi Sun;Kim, Tae hee;Koh, Hyoung Lim
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.459-467
    • /
    • 2022
  • Redispersion of Pt-Sn particles in Pt, PtSn catalyst which have been sintered by high temperature hydrogen reduction was investigated using oxygen treatment with various temperatures. The aim of this study was to understand the relationship between the catalytic activity for propane dehydrogenation reaction and the change in the physicochemical properties of the catalyst. X-ray diffraction analysis (XRD), CO pulse chemisorption, and H2 temperature programmed reduction (H2-TPR) were performed to investigate the state of active metal and interactions between particles of redispersed catalyst. It was confirmed that the dispersion and particle size of platinum, the crystal phase of the catalyst, and the reduction behavior were changed according to the oxygen treatment. As for the catalytic activity in propane dehydrogeantion, sintered PtSn catalyst treated with oxygen at 500 ℃ showed best activity and recovery of initial activity. It was confirm that catalyst after oxygen treatment at 500 ℃ showed high dispersion of Pt and decreased particle size as the results of CO pulse chemisorption and XRD of catalyst, and thus the redispersion of PtSn particles in sintered catalyst was occurred. Catalytic activity was recovered due to redispersion using oxygen treatment, and the activity recovery of the PtSn catalyst was higher than that of Pt catalyst.

Preparation and Electrical Properties of Manganese-incorporated Neodymium Oxide System

  • Jong Sik Park;Keu Hong Kim;Chul Hyun Yo;Sung Han Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.713-718
    • /
    • 1994
  • Manganese-incorporated neodymium oxide systems with a variety of Mn mol% were prepared to investigate the effect of doping on the electrical properties of neodymium oxide. XRD, XPS, SEM, DSC, and TG techniques were used to analyze the specimens. The systems containing 2, 5, 8, and 10 mol% Mn were found to be solid solutions by X-ray diffraction analysis and the lattice parameters were obtained for the single-phase hexagonal structure by the Nelson-Riley method. The lattice parameters, a and c, decreased with increasing Mn mol%. Scanning electron photomicrographs of the specimens showed that the grain size decreased with increasing Mn mol%. The curves of log conductivity plotted as a function of 1/T in the temperature range from 500 to 1000$^{\circ}C$ at $PO_2$'s of $10^{-5}$ to $10^{-1}$ atm for the specimens were divided into high-and low-temperature regions with inflection points near 820-890$^{\circ}C$. The activation energies obtained from the slopes were 0.53-0.87 eV for low-temperature region and 1.40-1.91 eV for high-temperature region. The electrical conductivities increased with increasing Mn mol% and $PO_2$, indicating that all the specimens were p-type semiconductors. At $PO_2$'s below $10^{-3}$ atm, the electrical conductivity was affected by the chemisorption of oxygen molecule in the temperature range of 660 to 850$^{\circ}C$. It is suggested that electron holes generated by oxygen incorporation into the oxide are charge carriers for the electrical conduction in the high-temperature region and the system includes ionic conduction owing to the diffusion of oxygen atoms in the low-temperature region.

Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing (고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조)

  • Kim, Yeon-Wook;Yun, Young-Mok
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.153-158
    • /
    • 2008
  • Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.