• 제목/요약/키워드: High-spin

검색결과 750건 처리시간 0.022초

Real-time Detection of Magnetic Beads using Highly Sensitive Spin-valve Devices for a Chip-cytometer

  • Roh, Jong-Wook;Son, Oh-Taek;Jung, Hyo-Il;Lee, Woo-Young
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2010년도 임시총회 및 하계학술연구발표회
    • /
    • pp.189-190
    • /
    • 2010
  • Our results demonstrate the possibility of implementing a chip-cytometer for biological applications using high-sensitive spin-valve devices integrated with a microfluidic channel. Further studies will be extended to the real-time detection of animal cells coated with magnetic beads for the biological applications.

  • PDF

COLLINEARITY AND SPIN FREEZING

  • Vincze, I.;Kemeny, T.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.343-350
    • /
    • 1995
  • An overview will be given on recent Mossbauer and magnetization investigation of the applied field dependence of the magnetic properties of typical systems without strong magnetic anisotropy and showing the absence of magnetic saturation in high fields (including iron-rich spin glass (amorphous $Fe_{93}Zr_{7}$, soft ferromagnets (amorphous $Fe_{88}Zr_{12}$, $Fe_{70}Ni_{20}Zr_{10}$ and $Fe_{88}B_{12}$) and pure Fe). The results emphasize that shape anisotropy due to surface irregularities causes misalignment between the magnetization and the applied field in the otherwise collinear magnetic structure.

  • PDF

Revival of Phonons in High Tc Superconductors

  • Bang, Yun-Kyu
    • Progress in Superconductivity
    • /
    • 제9권2호
    • /
    • pp.127-135
    • /
    • 2008
  • We study the effects of phonon interaction on the superconducting pairing in the high $T_c$ superconductors (HTSC). Using coupled BCS gap equations, we found that phonon interaction can induce a s-wave component to the d-wave gap, mediated by Antiferromagnetic (AFM) spin fluctuations, in the (D+iS) form. However, $T_c$ is not enhanced compared to the pure d-wave pairing without phonon interaction. On the other hand, anisotropic phonon interaction can dramatically enhance the d-wave pairing and $T_c$ itself, together with the AFM spin fluctuation interaction. This ($D_{AFM}+D_{ph}$) type pairing exhibits strongly reduced isotope coefficient despite the large enhancement of $T_c$ by phonon interaction.

  • PDF

Microfabrication of MEMS Cantilevers for Mechanically Detected High-Frequency ESR Measurement

  • Ohmichi, E.;Yasufuku, Y.;Konishi, K.;Ohta, H.
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.163-167
    • /
    • 2013
  • We fabricated prototype cantilevers for mechanically detected high-frequency ESR measurement. Cantilevers are fabricated from silicon-on-insulator (SOI) wafers using standard MEMS techniques such as lithography, wet etching, and plasma etching. Using commercial SOI wafers, fabrication cost and the number of processes can be substantially reduced. In this study, three types of cantilevers, designed for capacitive and optical detection, are shown. Capacitive type with lateral dimensions of $3.5{\times}1.6mm^2$ is aimed for low spin concentration sample. On the other hand, optical detection type with lateral dimensions of $50{\times}200{\mu}m^2$ is developed for high-sensitive detection of tiny samples such as newly synthesized microcrystals.

Efficiency enhancement of spray QD solar cells

  • Park, Dasom;Lee, Wonseok;Jang, Jinwoong;Yim, Sanggyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.420.1-420.1
    • /
    • 2016
  • Colloidal quantum dot (CQD) is emerging as a promising active material for next-generation solar cell applications because of its inexpensive and solution-processable characteristics as well as unique properties such as a tunable band-gap due to the quantum-size effect and multiple exciton generation. However, the most widely used spin-coating method for the formation of the quantum dot (QD) active layers is generally hard to be adopted for high productivity and large-area process. Instead, the spray-coating technique may potentially be utilized for high-throughput production of the CQD solar cells (CQDSCs) because it can be adapted to continuous process and large-area deposition on various substrates although the cell efficiency is still lower than that of the devices fabricated with spin-coating method. In this work, we observed that the subsequent treatment of two different ligands, halide ion and butanedithiol, on the lead sulfide (PbS) QD layer significantly enhanced the cell efficiency of the spray CQDSCs. The maximum power conversion efficiency was 5.3%, comparable to that of the spin-coating CQDSCs.

  • PDF

Improved high-performance La0.7Sr0.3MxFe1-xO3 (M = Cu, Cr, Ni) perovskite catalysts for ortho-para hydrogen spin conversion

  • Choi, Jeong-Gil;Choi, Euiji;Kweon, Soon-Cheol;Oh, In-Hwan
    • 한국결정성장학회지
    • /
    • 제28권1호
    • /
    • pp.44-50
    • /
    • 2018
  • The improved high-performance Fe-based perovskite-type oxides ($La_{0.7}Sr_{0.3}M_xFe_{1-x}O_3$, M = Cu, Cr, Ni) were synthesized by a citrate method and characterized by SEM, EDS, XRD and NMR spectroscopy analyses. The characterization analyses revealed that the stoichiometric amounts of lattice oxygen were existed in all of perovskite samples except for a nickel-doped perovskite. Fe-based perovskites exhibited a surprising result for ortho-para $H_2$ spin conversion reaction, indicating two orders of magnitude higher conversions and conversion rates than commercial $Fe_2O_3$. It was considered that this conversion difference might be attributed to the presence of oxygen vacancies in Fe-based perovskites prepared in this study.

Advanced Circuit-Level Model of Magnetic Tunnel Junction-based Spin-Torque Oscillator with Perpendicular Anisotropy Field

  • Kim, Miryeon;Lim, Hyein;Ahn, Sora;Lee, Seungjun;Shin, Hyungsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권6호
    • /
    • pp.556-561
    • /
    • 2013
  • Interest in spin-torque oscillators (STOs) has been increasing due to their potential use in communication devices. In particular the magnetic tunnel junction-based STO (MTJ-STO) with high perpendicular anisotropy is gaining attention since it can generate high output power. In this paper, a circuit-level model for an in-plane magnetized MTJ-STO with partial perpendicular anisotropy is proposed. The model includes the perpendicular torque and the shift field for more accurate modeling. The bias voltage dependence of perpendicular torque is represented as quadratic. The model is written in Verilog-A, and simulated using HSPICE simulator with a current-mirror circuit and a multi-stage wideband amplifier. The simulation results show the proposed model can accurately replicate the experimental data such that the power increases and the frequency decreases as the value of the perpendicular anisotropy gets close to the value of the demagnetizing field.

Cubane 구조를 가진 Co4 분자자성체의 전자구조 및 자기구조계산 (Electronic and Magnetic Structure Calculations of Cubane-type Co4 Magnetic Molecule)

  • 박기택
    • 한국자기학회지
    • /
    • 제27권4호
    • /
    • pp.140-144
    • /
    • 2017
  • Co 원자 4개를 포함한 cubane 구조의 분자자성체의 전자구조 및 자기적 성질을 제1원리의 범밀도함수법을 이용하여 계산하였다. 계산된 결과, Co 원자는 +2가를 가지며, 강한 내부 원자의 교환상호작용으로 high-spin 상태를 보여주었다. 스핀배열에 따른 총 에너지 계산에서 수직을 이루는 Co 원자 사이는 강자성, 더 큰 각도를 이루는 Co 원자 사이는 반강자성 교환상호작용이 일어남을 보여주었다. 이러한 원인은 $Co^{+2}(3d^7)$ 원자 사이의 초교환상호작용으로 설명할 수 있었었고, Co 분자자성체는 AFM1 = [${\uparrow}{\uparrow}{\downarrow}{\downarrow}$] 스핀구조를 가지고 있었다.

염료감응형 태양전지 투명전도성 막의 표면처리를 통한 계면 접촉 향상 및 재결합 방지 연구 (A Study on the Improvement of the Interface Contact and the Prevention of the Charge Recombination by the Surface Treatment of Transparent Conductive Oxide in Dye-sensitized Solar Cell)

  • 서현웅;홍지태;손민규;김진경;신인영;김희제
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2214-2218
    • /
    • 2009
  • Dye-sensitized solar cell (DSC) has been considered as a possible alternative to current silicon based p-n junction photovoltaic devices due to its advantages of high efficiency, simple fabrication process and low production cost. Numerous researches for high efficient DSC in the various fields are under way even now. Among them, the compact layer, which prevents the back electron transfer between transparent conductive oxides and the redox electrolyte, is fabricated by various methods such as a ZnO dip-coating, $TiCl_4$ dip-coating, and Ti sputtering. In this study, we tried to fabricate the $TiO_2$ compact layer by the spin-coating method using aqueous $TiCl_4$ solution. The effect of the spin-coating method was checked as compared with conventional dip-coating method. As a result, DSC with a spin-coated compact layer had 33.4% and 6% better efficiency than standard DSC and DSC with a dip-coated compact layer.

SI-BASED MAGNETIC TUNNELING TRANSISTOR WITH HIGH TRANSFER RATIO

  • S. H. Jang;Lee, J. H.;T. Kang;Kim, K. Y.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.24-24
    • /
    • 2003
  • Metallic magnetoelectronic devices have studied intensively and extensively for last decade because of the scientific interest as well as great technological importance. Recently, the scientific activity in spintronics field is extending to the hybrid devices using ferromagnetic/semiconductor heterostructures and to new ferromagnetic semiconductor materials for future devices. In case of the hybrid device, conductivity mismatch problem for metal/semiconductor interface will be able to circumvent when the device operates in ballistic regime. In this respect, spin-valve transistor, first reported by Monsma, is based on spin dependent transport of hot electrons rather than electron near the Fermi energy. Although the spin-valve transistor showed large magnetocurrent ratio more than 300%, but low transfer ratio of the order of 10$\^$-5/ prevents the potential applications. In order to enhance the collector current, we have prepared magnetic tunneling transistor (MTT) with single ferromagnetic base on Si(100) collector by magnetron sputtering process. We have changed the resistance of tunneling emitter and the thickness of baser layer in the MTT structure to increase collector current. The high transfer ratio of 10$\^$-4/ range at bias voltage of more than 1.8 V, collector current of near l ${\mu}$A, and magnetocurrent ratio or 55% in Si-based MTT are obtained at 77K. These results suggest a promising candidate for future spintronic applications.

  • PDF