• Title/Summary/Keyword: High-speed vehicle

Search Result 1,293, Processing Time 0.032 seconds

A Study on the Performance Elevation Methods of Next Generation Railway Freight Vehicles (한국형 고속열차를 이용한 고속선-기존선 연결구간의 속도향상 가능성에 관한 연구)

  • Ham Y.S.;Hong J.S.;Oh T.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.12-15
    • /
    • 2005
  • In April 1, 2004, age of high-speed railway was opened to korea railroad. The railroad is a means of large transportation which has many talents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail farce, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, examined speed elevation possibility use the korean style high speed railway vehicle for reduce the running time of high-speed railway between high speed line and conventional line.

  • PDF

Improving the Dynamic Characteristics of the Pantograph Using the Sensitivity Analysis (동적 민감도 해석을 이용한 판토그래프의 동특성 개선)

  • Kim, Jin-Woo;Park, Tong-Jin;Wang, Young-Yong;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.679-685
    • /
    • 2001
  • In this paper, the dynamic response of the pantograph system that supplies electrical power to a high-speed rail vehicle were investigated. The analysis of the catenary based on the Finite Element Method (FEM) is executed to develop a pantograph fits well in high-speed focused on the dynamic characteristic analysis of the pantograph system. By simulation of the pantograph-catenary system, the static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing constant moving load and the contact force analysis were executed. In order to consider the design variables that effects on the dynamic characteristic of the pantograph system performed the dynamic sensitivity analysis. From the pantograph-catenary analysis, the design parameters of a pantograph could be improved. From the results of the sensitivity analysis, a pantograph with improved parameters is suitable for a high-speed rail vehicle from the design-parameter analysis.

  • PDF

Lateral Vibration Analysis of a Small Scale Railway Vehicle Model (축소형 차량의 횡진동 해석)

  • Lee Seung-Il;Son Gun-Ho;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.417-422
    • /
    • 2004
  • The vibration of a running vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a small scale railway vehicle model. Also, the effects on the car body, bogie and wheelset were examined for the weight and the stiffness of the first and second suspension. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension increase. And the lateral vibration of the bogie increases as the mass ratio between car body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

  • PDF

Design and Cold Test of Semi-Freejet High Altitude Environment Simulation Test Facility for High-Speed Vehicle (초고속 비행체를 위한 준 자유흐름식 고공환경 모사시험설비의 설계 및 상온실험)

  • Lee, Seongmin;Yu, Isang;Park, Jinsu;Ko, Youngsung;Kim, Sunjin;Lee, Jungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.115-124
    • /
    • 2018
  • In this study, a cold flow test was carried out on a high-speed vehicle facility with a high-altitude environment simulator. Variable test was carried out according to the blockage ratio, angle, and length of the test model. It is confirmed that the blockage rate can be operated in the range of 40%, and that the model should be selected at an angle of 45 degrees or less. The variables of length are less dominant compared to the variables of blockage rate and angle. Through this, a database is obtained according to the parameters of the conical model of the high-speed vehicle test facility.

Development of 1-3 Dimensional Hybrid Mesh Method for Flow Analysis of the Ultra-High Speed Vehicle Inside a Long Distance Tunnel (장거리 터널 내 고속 운송체의 유동 해석을 위한 1-3차원 혼합격자 기법개발)

  • Choi, Joong-Keun;Kim, Tae-Kyung;Kwon, Hyeok-Bin;Kim, Kyu-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.119-127
    • /
    • 2011
  • This paper shows development of 1-3 dimensional hybrid mesh method to analysis flow induced by ultra-high speed vehicle inside a long distance tunnel. For three-dimensional analysis of the tunnel system many meshes are required. However it is not efficient to calculate the whole tunnel system in three-dimension. Therefore in this paper, three-dimension meshes was used to describe stations, shafts and around vehicle, and one-dimension meshes was used to describe the tunnel except these three sections. And unsteady flow analysis of the ultra-high speed vehicle was performed with UDFs in commercial software, Ansys vr. 12.0.

  • PDF

Edge-Based Tracking of an LED Traffic Light for a Road-to-Vehicle Visible Light Communication System

  • Premachandra, H. Chinthaka N.;Yendo, Tomohiro;Tehrani, Mehrdad Panahpour;Yamazato, Takaya;Fujii, Toshiaki;Tanimoto, Masayuki;Kimura, Yoshikatsu
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.475-487
    • /
    • 2009
  • We propose a visible light road-to-vehicle communication system at intersection as one of ITS technique. In this system, the communication between vehicle and a LED traffic light is approached using LED traffic light as a transmitter, and on-vehicle high-speed camera as a receiver. The LEDs in the transmitter are emitted in 500Hz and those emitting LEDs are captured by a high-speed camera for making communication. Here, the luminance value of each LED in the transmitter should be found for consecutive frames to achieve effective communication. For this purpose, first the transmitter should be identified, then it should be tracked for consecutive frames while the vehicle is moving, by processing the images from the high-speed camera. In our previous work, the transmitter was identified by getting the subtraction of two consecutive frames. In this paper, we mainly introduce an algorithm to track the identified transmitter in consecutive frames. Experimental results using appropriate images showed the effectiveness of the proposal.

Dynamic analysis of KTX running characteristics (KTX 주행특성 해석)

  • Kang Bu-Byoung;Chung Heung-Chai;Kim Jae-Chul;Goo Dong-Hoe
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.718-723
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

  • PDF

Dynamic Analysis of KTX Vibration at the Tail of the Train (KTX 차량 후미진동 해석(I))

  • 강부병;김영우;왕영용
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test, lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was "appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

Critical speed analysis of the High-Speed EMU (분산형 고속전철의 임계속도 해석)

  • Shin, Bum-Sik;Lee, Seung-Il;Lee, Sang-Won;Koo, Ja-Choon;Choi, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.973-978
    • /
    • 2008
  • This study concerned on the critical speed due to hunting and snake motion train to ensure the stability. First, the critical speed was calculated by using a numerical model, and calculated the critical speed of the vehicle through the simulation with the use of ADAMS/RAII. Also, the snake motion was confirmed through a modal analysis and running simulation. The calculated results, show that the rail irregularity becomes the influential factors of the stability since it is the direct source of excitation of the vehicle.

  • PDF

Running Stability Assessment of a Railway Vehicle using Roller Rig Test (주행시험대 시험을 이용한 철도차량의 주행안정성 평가 방법 고찰)

  • Park, Joon-Hyuk;Park, Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.577-587
    • /
    • 2017
  • In the design process of dynamic characteristics of a railway vehicle, demand for analysis, testing and estimation methods of running stability are increasing as railway vehicle speed is increasing. Critical speed tests and estimation have been carried out using computer simulation or special test facilities, like roller rigs, because real track testing at critical speed is very dangerous. This paper introduces a test and assessment method for critical speed and estimates the validity using several roller rig tests. The test results show that it is difficult to estimate the critical speed using safety and instability assessment method in UIC 518, but that there is good agreement between the reduction of the equivalent damping ratio and the critical speed.