• Title/Summary/Keyword: High-speed vehicle

Search Result 1,293, Processing Time 0.028 seconds

A Research for Improvement of WIM System by Abnormal Driving Patterns Analysis (비정상 주행패턴 분석을 통한 WIM 시스템 개선 연구)

  • Park, Je-U;Kim, Young-Back;Chung, Kyung-Ho;Ahn, Kwang-Seon
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.59-72
    • /
    • 2010
  • WIM(Weigh-In-Motion) is the system measuring the weight of the vehicle with a high-speed. In the existing WIM system, vehicle weight is measured based on the constant speed and the error ratio has 10%. However, because of measuring the driving pattern, that is abnormal driving pattern which is like the acceleration and down-shift of the drivers, it has the error ratio which is bigger than the real. In order to it reduces the error ratio of WIM system, the improved WIM system needs to find the abnormal driving pattern. In order to reducing the error ratio of these WIM systems, the improved WIM system can find abnormal driving patterns. In this paper, the improved WIM system which analyzes the abnormality driving pattern influencing on the error ratio of WIM system of an existing and minimizes the error span is designed. The improved WIM system has the multi step loop structure of adding the loop sensor to an existing system. In addition, the measure function defined as an intrinsic is improved and the weight measured by the abnormal driving pattern is amended. The analysis of experiment result improved WIM system can know the fact that the error span reduces by 8% less than in the existing the maximum average sampling error 22.98%.

Study on Static Pressure Error Model for Pressure Altitude Correction (기압 고도의 정밀도 향상을 위한 정압 오차 모델에 관한 연구)

  • Jung, Suk-Young;Ahn, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2005
  • In GPS/INS/barometer navigation system for UAV, vertical channel damping loop was introduced to suppress divergence of the vertical axis error of INS, which could be reduced to the level of accuracy of pressure altitude measured by a pitot-static tube. Because static pressure measured by the pitot-static tube depends on the speed and attitude of the vehicle, static pressure error models, based on aerodynamic data from wind tunnel test, CFD analysis, and flight test, were applied to reduce the error of pressure altitude. Through flight tests and sensitivity analyses, the error model using the ratio of differential pressure and static pressure turned out to be superior to the model using only differential pressure, especially in case of high altitude flight. Both models were proposed to compensate the effect of vehicle speed change and used differential and static pressure which could be obtained directly from the output of pressure transducer.

Analysis of the effect on Road Network with Communication Failure Rate of C-ITS Information System for Rear-end Collision Avoidance (C-ITS 차량 추돌방지 지원 시스템의 통신 부하를 고려한 도로네트워크 영향 분석)

  • Kim, Jun-Yong;Kim, Jin-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.71-82
    • /
    • 2016
  • Information System for rear-end collision avoidance is a unit service of C-ITS pilot project. Road environment that the number of vehicles at the same driving high-speed has a possibility that the communication delay or failure caused by heavy load of vehicle to vehicle communication. In this study, effects of the road network about a communication failure rate of information system for rear-end collision avoidance was analyzed quantitatively with micro traffic simulation. The simulation was carried out in situation that crash of two vehicles are occurred at merging area with speed limit 80km/h and information of collision is prvoided to the rear vehicle. From simulation results, it can confirm the trend of the increasing 14% of potential conflict according to 10% increasing of the communication failure rate. C-ITS service has a goal of increasing safety. The coommunication failure rate increases due to heavy load of vehicle causes a fatal result in road safety administrator position. For the success of C-ITS project, a communication system developers side should perform the effort to reduce the communication failure rate.

An Exploratory Study on the Applicability of Thin-Film Photovoltaic Cells for Auxiliary Power Supply of a Personal Rapid Transit (PRT) Vehicle (PRT 차량의 보조 전력공급을 위한 유연소재 태양전지의 적용 가능성 연구)

  • Kang, Seok-Won;Han, Soo-Jin;Jeong, Rag-Gyo;Oh, Hyuck Keun;Ko, Sangwon;Choi, Dooho
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2014
  • Recently, trends in new transportation system development have been primarily focused on sustainable and ecofriendly mobility solutions. The personal rapid transit (PRT) system has been considered a promising candidate in this category; its competitiveness is being improved through convergence with cutting-edge electric vehicle (EV) technologies. However, battery-powered vehicles pose difficult technical challenges in attempts to achieve reliable and efficient operation. In this study, a design approach for a solar-power assisted PRT system is presented with small-scale demonstrations aimed at circumventing challenges facing its adoption, as well as helping speed the transition to electric-powered ground transportation. From the results, it is expected that flexible photovoltaic (PV) cells will be able to supply 11% of the power required by the service equipment installed in a prototype vehicle. In particular, flexible photovoltaic (PV) cells are advantageous in terms of cost, weight, and design considerations. Most importantly, the cells' flexibility and attach-ability are expected to give them great potential for extended application in various areas.

A Study on Life Prediction of Hydraulic Piston Pump (유압 피스톤 펌프의 수명 예측 연구)

  • Kim, Kyungsoo;Lee, Jihwan;Kang, Myeongcheol;Ryuh, Beomsahng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.607-613
    • /
    • 2018
  • Hydraulic systems are widely used in the field of defense, construction machinery, agricultural machinery, and general industries, due to various advantages such as quick response speed and precision control. The defense equipments such as light rescue vehicle is operated in very harsh environments, so hydraulic components used in defense equipment are required to have very high reliability. In particular, hydraulic piston pump is very important component in a hydraulic systems, so life prediction of pump is essential. Therefore, in this study, we analyze the potential failure and the main failure mode of the hydraulic piston pump for the light rescue vehicle through the FMEA analysis, and predict the life of the pump by the accelerated life test considering the usage conditions.

A Study on the System for Lane Departure Detection Using Color Data Processing (컬러정보처리를 이용한 차선이탈경보시스템의 연구)

  • Shin Cheon Woo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.428-437
    • /
    • 2005
  • In this paper, we developed lane departure warning system for lane departure situation of vehicle, accidentally. Color level of yellow lane of road side is changed to black and white level. And black and white level value of relevant pixel of original and yellow lane through added process of this are emphasized. In lane departure detection system, color image data processing method could improve the recognition of the yellow lane(central lane). We could get a system Performance of the high-speed image data Processing. Therefore, lane departure warning system will be utilized at the device for the safety going of the vehicle.

  • PDF

Thrust Simulation and Experiments for Underwater Thrusters (수중추진기의 추진력 시뮬레이션 및 실험)

  • Ahn, Yong-Seok;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.51-59
    • /
    • 2017
  • In the early design stage of underwater vehicles, it is important to estimate the vehicle's underwater motion performance. The key design elements for the motion are propellers, battery power, and underwater resistance of the vehicle. Small thrusters with motor and propeller are usually used for the UUV(unmanned underwater vehicles). In this study, a multiphysics thruster model combining electro-mechanical and hydrodynamics characteristics was proposed to estimate the thruster performance. To show the applicability of the mathematical model, an sample thruster was used for the derive the unknown parameters of thruster. Hydrodynamic parameters were calculated for a 3D geometry model of the propeller by ANSYS/CFX program. Finally, Matlab/simulink program was used for the numerical simulation to predict the thruster performance from the given voltage/current input to the motor. Also, proved validity of simulation model by experiment test. Test were done by 2 mode(middle/high speed, reverse). The thruster performance curves obtained from this simulation were confirmed to be similar with experiment results.

Kinetic Energy Recovery System for Electric Vehicles (전기자동차용 기계적 에너지 회생장치)

  • Shin, Eung-Soo;Bang, Jae-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.440-445
    • /
    • 2011
  • This paper presents a new regenerative brake system of electric vehicles that employs a continuous variable transmission(CVT) and a flywheel. The developed device has advantages over existing regenerative brakes from a standpoint of reliability and versatility in actual driving conditions. The system consists of a CVT, two wheels, a flywheel, a coupling and auxiliary powertrain components. The CVT is designed as a combination of two cones and a roller, which causes the velocity difference between the wheel and the flywheel. The power flow of the flywheel system is controlled by the CVT roller and the coupling through step motors. A prototype has been developed and then its performance has been investigated for various operating conditions. Results show that the storage efficiency of the flywheel is much affected by the vehicle's velocity and it is reduced below 20% for high speed, as compared to the 25% efficiency for an ideal condition. The CVT is a primary factor for lowering the flywheel efficiencies due to large friction and slipping between the cone and the roller.

Measurement of Aerodynamic Loads on Railway Vehicles Under Crosswind (측풍 시 철도차량에 가해지는 공기역학적 하중의 측정)

  • Kwon, Hyeok-Bin;You, Won-Hee;Cho, Tae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.91-98
    • /
    • 2011
  • In this study, we measure the aerodynamic forces acting on an AREX train in a crosswind by wind tunnel testing. A detailed test model scaled to 5% of the original and including the inter-car, under-body, and the bogie systems was developed. The aerodynamic forces on the train vehicles have been measured in a 4 m $\times$ 3 m test section of the subsonic wind tunnel located in Korea Aerospace Research Institute (KARI). The aerodynamic forces and moments of the train model on two different track models have been plotted for various yaw angles, and the characteristics of the aerodynamic coefficients have been analyzed at the experimental conditions.

Development and Validations of Air Data System using MEMS Sensor for High-Performance UAV (MEMS 압력센서를 이용한 고성능 무인항공기용 공력자료시스템의 개발과 검증)

  • Baek, Un-Ryul;Kim, Sung-Su;Kim, Sung-Hwan;Park, Choon-Bae;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.1017-1025
    • /
    • 2008
  • The air data system(ADS) was developed for unmanned aerial vehicle(UAV) in this paper. Generally, the ADS helps flight control computer(FCC) to control the UAV above the stall speed and to hold the given altitude. The accurate measurement of airspeed and altitude of UAV is important because it indicates a flight performance and assures a safe flight. The ADS consists of MEMS pressure sensors, a lowpass filter, a micro controller unit and a pitot-tube. The ADS errors were reduced by pressure and temperature compensation of MEMS sensors. Finally, the altitude and airspeed data of the ADS was compared with GPS data in the flight test.