• Title/Summary/Keyword: High-speed towing test

Search Result 38, Processing Time 0.026 seconds

Some Tests on Spray of a Prismatic Planing Hull (주상활주선형(柱狀滑走船型)의 SPRAY 관측(觀測)과 저면압력분포(底面壓力分布))

  • Mun-Keun Ha;Michio Nakato
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.100-111
    • /
    • 1994
  • This study was carried out for understanding the characteristics of the spray around high speed vessels. Prismatic planing hull made of an acrylate board was used to the tests. The distribution of local spray velocity were estimated from the analysis of the spray visualization. A new test system for measuring the spray thickness is proposed, and was used to estimate the local spray thickness in the model. The pressure distributions on the bottom of the hull are measured and integrated to estimate the pressure drag of the model in the towing tests. Finally. the spray drag/lift component is separated from the total drag/lift on the prismatic hull. These test results show that the spray drag component on high speed vessels is relatively large and important in total drag.

  • PDF

The Prediction of Resistance of a 23m Class Planing Hull

  • Yang, Seung-Il;Shin, Myung-Soo;Park, Yong-Jea;Min, Keh-Sik;Kim, Jae-Shin;Kim, Hyo-chul;Hong, Sung-Wan;Lee, Seung-Hee;Lee, Young-Gill;Chung, Jung-Han
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.68-79
    • /
    • 1996
  • The present report describes the results of the cooperative experimental study organized by the High-Speed Marine Vehicle Committee of the Korea Towing Tank Conference. The study aims to improve model test technique and accuracy and to self-evaluate their own capabilities. The resistance tests of a 23m class planing hull were performed at the towing tanks of the Korea Research Institute of Ships and Ocean Engineering (KRISO), Hyundai Maritime Research Institute (HMRI), Seoul National University (SNU), Inha University (IU) and Pusan National University (PNU). In addition, the longitudinal wave cut was measured antral and analyzed at the KRISO. All the results of total resistance, trim and mean sinkage are presented in this report and the results show fairly good agreements comparing with the ITTC HSMV committee's report.

  • PDF

Uncertainty Assessment of a Towed Underwater Stereoscopic PIV System (예인수조용 스테레오스코픽 입자영상유속계 시스템의 불확실성 해석)

  • Seo, Jeonghwa;Seol, Dong Myung;Han, Bum Woo;Yoo, Geuksang;Lim, Tae Gu;Park, Seong Taek;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • Test uncertainty of a towed underwater Stereoscopic Particle Image Velocimetry (SPIV) system was assessed in a towing tank. To estimate the systematic error and random error of mean velocity and turbulence properties measurement, velocity field of uniform flow was measured. Total uncertainty of the axial component of mean velocity was 1.45% of the uniform flow speed and total uncertainty of turbulence properties was 3.03%. Besides, variation of particle displacement was applied to identify the change of error distribution. In results for variation of particle displacement, the error rapidly increases with particle movement under one pixel. In addition, a nominal wake of a model ship was measured and compared with existing experimental data by five-hole Pitot tubes, Pitot-static tube, and hot wire anemometer. For mean velocity, small local vortex was identified with high spatial resolution of SPIV, but has serious disagreement in local maxima of turbulence properties due to limited sampling rate.

Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails

  • Seo, Jeonghwa;Choi, Hak-Kyu;Jeong, Uh-Cheul;Lee, Dong Kun;Rhee, Shin Hyung;Jung, Chul-Min;Yoo, Jaehoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.442-455
    • /
    • 2016
  • The resistance and seakeeping performance of a high-speed monohull vessel were investigated through a series of model tests in a towing tank. The hull had a slender wave-piercing bow, round bilge, and small deadrise angle on stern. Tests on the bare hull in calm water were first conducted and tests on spray rails followed. The spray rails were designed to control the flow direction and induce a hydrodynamic lift force on the hull bottom to reduce trim angle and increase rise of the hull. The maximum trim of the bare hull was $4.65^{\circ}$ at the designed speed, but the spray rails at optimum location reduced trim by $0.97^{\circ}$. The ship motion in head seas was examined after the calm water tests. Attaching the rails on the optimum location effectively reduced the pitch and heave motion responses. The vertical acceleration at the fore perpendicular reduced by 11.3%. The effective power in full scale was extrapolated from the model test results and it was revealed that the spray rails did not have any negative effects on the resistance performance of the hull, while they effectively stabilized the vessel in calm water and waves.

Improvement of resistance performance of the 4.99 ton class fishing boat (4.99톤 어선의 저항성능 개선)

  • JEONG, Seong-Jae;AN, Heui-Chun;KIM, In-Ok;PARK, Chang-Doo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.446-455
    • /
    • 2017
  • The improvement of resistance performance for the 4.99 ton class fishing boats was shown. The 4.99 ton fishing boats are the most commonly used one in the Korean coastal region. The evaluation of resistance performance was estimated by the Computational Fluid Dynamics (CFD) analysis. The CFD simulation was performed by the validation for various types of bow shapes on the hull. The optimized hull form from the simulation was selected and showed the best resistance performance. This hull type was tested on the towing tank in the National Institute of Fisheries Science (NIFS). The effective horsepower (EHP) was estimated by the resistance test on the towing tank with the bare hull condition. The drag force on the three service speed conditions was obtained for the resistance analysis to power prediction. The measured drag forces are compared with the results from the CFD simulation with one another. As results of the model tests, it was confirmed that the shape of the bow is an important factor in the resistance performance. The effective horsepower decreased about 30% in comparison with the conventional hull form. Also, the resistance performance improved the reduction of required horsepower, which especially contributed to the energy-saving for the fisheries industry. In the CFD analysis, the resistance performance improved slightly. In this case, the ratio of the residual resistance ($C_R$) in the total resistance ($C_T$) was high. Therefore, the CFD analysis was not enough to satisfy with reflection for the free surface and wave form in the CFD procedure. Both model test and CFD calculation in this study can be applied to the initial design process for the coastal fishing vessel.

A Study on the Comparison of the Rolling and Resistance Performance for the Stepped-Hull with attached a Stern-body by using Sea Model-Test (실 해상모형시험을 이용한 선미 보조동체 장착 Stepped hull 선형의 횡동요 및 저항특성 비교 연구)

  • Jo, Hyo-Jae;Sohn, Kyoung-Ho;Park, Chung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.813-818
    • /
    • 2007
  • There are the C.W.C and Towing Tank to the model-test equipments of the boat. A model testing of the high speed boat have a difficult in the performance verification because of very a small the scale-ratio of the ship-model and restricted by flow-velocity of the C.W.C and X-carriage velocity of the T.T. In general, the stepped hull boat is a high of fuel-efficiency because of the resistance reduction by a small wetted surface-area in correspond without stepped-hull boat. But It have a tendency to be bad the rolling performance by reduced stern wetted-area In this paper, the high speed stepped planning-boats with & without attached a stern body were performed to compare the effect of resistance and rolling performance by using sea model-test method.

Characteristic of hull motion due to external forces at anchor (묘박 중 외력에 의한 선체의 운동 특성)

  • Chang-Heon LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • In order to provide basic data to increase the efficiency and stability of seamanship at anchoring, the characteristics of the hull motion including dragging anchor due to external forces were observed at Mokpo and Jinhae anchorage for the avoidance of the typhoon. As a result, it is necessary to check the embedding motion and holding power of the anchor according to at initial position to decrease dragging anchor. Dragging anchor at anchorage seems to have been easily caused according to discrepancy between embedded anchor flukes and the towing direction due to the change in wind direction, rather than the wind speed. This discrepancy, thus, should be considered when anchoring. This test vessel with a small radius of curvature of the stem is relatively vulnerable to the influence of wind direction and wind speed, so it is easy to cause a decrease in the holding power due to an increase in the rate of turn. When the current speed is greater than or equal to 1 knot, the range of the rate of turn is reduced resulting in a relatively increased holding power. In addition, during the swing, the tension of the chain was high according to the angular velocity change of heading at three-quarters of the swing length rather than the left and right ends.

Performance Test of Pod-type Waterjet Propulsion System (Pod형 물분사 추진장치 성능시험 연구)

  • Kim, K.S.;Song, I.H.;Ahn, J.W.;Moon, I.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.21-30
    • /
    • 1997
  • This paper describes the experimental method of a pod-type waterjet propulsion system in a towing tank and shows the experimental analysis and test results of a designed waterjet propulsion system to be used for a hybrid high speed craft. The cruising performance of this craft is estimated from the results of the hull resistance test and waterjet test under the assumption that the interaction between the hull and the inlet pod is very small. A pod-type waterjet system with an axial pump was designed and a stand-alone waterjet experimental system was developed. Useful data such as the pump performance, the jet efficiency, the losses of inlet duct and nozzle were obtained. Test results show a good agreement with the design requirement.

  • PDF

Mathematical Model Identification and Optimal Navigation Control for Automatic Navigation of Underwater Vehicle (수중운동체의 자율운항을 위한 수학모델 확립과 최적운항 제어기법)

  • Kim, Jong-Hwa;Son, Kyeong-Ho;Kong, Gil-Yeong;Lee, Seung-Geon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.216-217
    • /
    • 2005
  • This paper presents an integrated navagation control concept for underwater vehicles under high speed navigation circumstance. First of all, in order to control an underwater vehicle with respect to automatic navigation, an integrated navigation control method is suggested in view of synchronous control for course keeping, diving and depth control. An exact nonlinear model equation with six-degree-of-freedom is derived for control algorithm. To identify various hydrodynamic coefficients of the equation, an experimental approach is introduced and results are demonstrated for MANTA type model.

  • PDF

Self-propulsion Test and Analysis of Amphibious Armored Wheeled Vehicle with Propulsion System of POD Type Waterjet (전투 차량용 포드형 물 분사 추진장치의 모형시험 및 해석)

  • Byun, Tae-Young;Kim, Moon-Chan;Chun, Ho-Hwan;Kim, Jong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.197-204
    • /
    • 2005
  • A waterjet propulsion system has many advantages compared with a conventional screw propeller especially for amphibious armored wheeled vehicles because of a good maneuverability at low speed, good operation ability at shallow water, high thrust at low speed to aid maneuverability and exit from water, etc. The POD type waterjet is adequate for the present wheeled vehicle because the weight is lighter and L/B is longer than the conventional armored amphibious vehicle. Resistance and self-propulsion tests with a 1/3.5-scale model are conducted at PNU towing tank. Based on these measurements, the performance is analyzed according to ITTC 96 standard analysis method and also according to the conventional propulsive factor analysis method. Based on these two methods, the full-scale effective and delivered powers of amphibious armored wheeled vehicle are estimated. This paper emphasizes the analysis method of model test of the waterjet propulsion system for a amphibious armored wheeled vehicle and the model test technique together with the comparison of the two analysis methods.