• 제목/요약/키워드: High-speed railway bridge

검색결과 257건 처리시간 0.026초

고속전철 PSC 박스거더 교량의 합성거동에 관한 연구 (A Study on the Behavior of Composite PSC Box Girder High-speed Railway Bridges)

  • 김영진;김병석;강재윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.54-60
    • /
    • 1998
  • PSC box bridges by MSS construction method in high-speed railway may not be cast in place at one step. Web and bottom flange(U member) in the cross section are cast in place at first, then top flange will be cast in place later with some time lag. In this section, stress distributions of U member and top flange are different with those in generally complete cast in place cross section. In the composite section composed of two different aged members, the redistribution of stresses takes place. This results from time-dependent strain characteristics of concrete and the effects of forces applied at the various stages. For comparison in the present paper, two models, one with the composite cross section and the other with generally complete cast in place cross section, are analyzed. The longitudinal stress differences of two models on considering construction stages are compared. As the analysis results show the considerable differences in the stresses of cross section between two models, the composition of cross section is considered for rational design of PSC box girder bridge.

  • PDF

고속철도 교량의 동적거동에 미치는 탄성받침의 영향 (The Effects of Elastomer-Bearing on the Dynamic Behaviors of Bridge for KHSR)

  • 곽종원;김병석
    • 한국지진공학회논문집
    • /
    • 제3권3호
    • /
    • pp.1-8
    • /
    • 1999
  • 현재 시공 중에 있는 경부고속철도의 교량은 2경간 연속인 경우에 중앙교각에는 pot 받침이 설치되고 양끝단의 교각에는 pad 받침이 설치되고 있으나 기존의 고속주행하는 철도에 의한 교량의 동해석에서는 이러한 지점조건이 고려되지 않은 상태에서 이루어져다 본 논문의 목적은 이러한 지점조건의 상이성에 따른 교량의 거동파악에 있으며 이를 위하여 본 연구에서는 이러한 지지점에사용된 탄성받침이 교량의 동적 거동에 미치는 영향에 관하여 연구하였다.

  • PDF

가동단 마찰계수가 장대레일 축력 안정성에 미치는 영향 검토 (Review of effects of friction coefficient of moving bearing on Stability of CWR)

  • 유제남;최영준;양신추
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.812-817
    • /
    • 2004
  • Recently drastic improvement of railway technology has been accompanied by the construction of very high-speed tracks. It should be noticed that Continuously Welded Rail(CWR) has played significant role in technical development of railway and that installation of CWR is now being scheduled on existing lines as well as newly-built lines. In general, interaction between CWR and bridge deck takes place on bridge section and additional axial force and displacement is to be developed owing to temperature and braking/acceleration forces. This interaction is known to be mainly governed by span organizations and arrangements of foot bearings. In common practice, movable bearing is stationed and designed on the assumption that it is not able to transfer the horizontal force of upper decks. However, it is well known that horizontal resistance is developed in movable bearings due to friction and that friction coefficient of movable bearing is ranged from 0.03 to 0.20 depending on the material of bearings and magnitude of reactions. Therefore, it is easily reasoned out that friction of movable bearing can influence the mutual behavior of CWR and bridge decks. Suggested in this study is to investigate the validity and efficiency of friction effect of movable bearings in controlling the axial force and displacement of CWR on continuous railway bridges.

  • PDF

Hysteretic behaviors of pile foundation for railway bridges in loess

  • Chen, Xingchong;Zhang, Xiyin;Zhang, Yongliang;Ding, Mingbo;Wang, Yi
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.323-331
    • /
    • 2020
  • Pile foundation is widely used for railway bridges in loess throughout northwestern China. Modeling of the loess-pile interaction is an essential part for seismic analysis of bridge with pile foundation at seismically active regions. A quasi-static test is carried out to investigate the hysteretic behaviors of pile foundation in collapsible loess. The failure characteristics of the bridge pile-loess system under the cyclic lateral loading are summarized. From the test results, the energy dissipation, stiffness degradation and ductility of the pile foundation in loess are analyzed. Therefore, a bilinear model with stiffness degradation is recommended for the nonlinearity of the bridge pier-pile-loess system. It can be found that the stiffness of the bridge pier-pile-loess system decreases quickly in the initial stage, and then becomes more slowly with the increase of the displacement ductility. The equivalent viscous damping ratio is defined as the ratio of the dissipated energy in one cycle of hysteresis curves and increases with the lateral displacement.

철도 시설 및 차량 분야 사고 발생에 따른 비상대응 설비 환경 분석 연구 (A Study on emergency equipments for accidents of rail infrastructure and rolling-stock)

  • 양도철;서영민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1817-1823
    • /
    • 2007
  • In this study, we have studied rail infrastructure related to emergency action to manage the risk when emergency caused by faults of facility or rail vehicle during operation happens. Especially we have compared the effect of emergency action with examining the structure of vehicle, tunnel, bridge and access road, etc which are related to emergency action. Also, we have tried to analyze effects of radio and communication equipment, lifesaving and refuge which could be used for rolling stock, station, control room, tunnel, bridge and etc, and we have presented the way of reporting the emergency to the train driver or crew, control room, outside networks which could be used by passengers in vehicle, station, railroad line. Based on these, we have analyzed the conduct of emergency action in length of time when emergency happens in railway and high-speed railway, and studied the method of which passengers could be guided safely and escape from the scene of the accident.

  • PDF

운행 열차의 윤중측정을 위한 계측장비 개발 (A simple measurement system for train vehicle load)

  • 방춘석;이준석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.1074-1079
    • /
    • 2002
  • Long term measurement data on the bridge response caused by moving loads are fundamental ingredient to the development or improvement of the new bridge design. In addition, proper establishment of the systematic analysis and diagnosis together with the maintenance system become the essential procedure to the effective repair/reinforcement/retrofit of not only the high speed but also the conventional railway bridges. Therefore, the real time health monitoring system on the important railway bridges should be enhancing the proper maintenance of the structures. The main objective of this study is, therefore, to develop a monitoring device including Weigh-In-Motion (WIM) function and the emphasis is place on the easy and economic installation of the developed system in the field condition.

  • PDF

A parametric study of optimum tall piers for railway bridge viaducts

  • Martinez-Martin, Francisco J.;Gonzalez-Vidosa, Fernando;Hospitaler, Antonio;Yepes, Victor
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.723-740
    • /
    • 2013
  • This paper presents a parametric study of reinforced concrete bridge tall piers with hollow, rectangular sections. Such piers are typically used in railway construction of prestressed concrete viaducts. Twenty one different piers have been studied with seven column heights of 40, 50, 60, 70, 80, 90 and 100 m and three types of 10-span continuous viaducts, whose main span lengths are 40, 50 and 60 m. The piers studied are intermediate columns placed in the middle of the viaducts. The total number of optimization design variables varies from 139 for piers with column height of 40 m to 307 for piers with column height of 100 m. Further, the results presented are of much value for the preliminary design of the piers of prestressed concrete viaducts of high speed railway lines.

고속철도 차량의 시$\cdot$제동 하중에 대한 교량상 장대레일의 주행안전성 평가 (Stability of CWR track on the High-Speed Railway Bridges considering Braking and Accelerating Forces)

  • 진원종;김병석;곽종원;강재윤;최은석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.769-774
    • /
    • 2004
  • In this paper, the main factors affect on the longitudinal rail force are discussed. Considering rail-bridge interaction, analytical and experimental evaluation of track behavior has been achieved. It is concluded that the horizontal ballast strength, the expansion length of the bridge span, and the stiffness of the bridge sub-structure are the significant parameters affecting the stability of the continuous welded rail (CWR) track. And, it is suggested that the ballast resistance forces should be maintained to ensure the track stability during the service.

  • PDF

차세대 고속 전철용 Battery Charger 에 관한 연구 (A Study on the Battery Charger for Next Generation High Speed Train)

  • 정한정;이원철;이상석;백진성;원충연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2008
  • Recently, there is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Among them, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

기초 설계를 위한 고속철도 교량-열차 상호작용 해석의 부구조화 기법 (Sub-structuring Technique of High-speed Train-bridge Interaction Analysis for Foundation Design)

  • 이강일;송명관
    • 한국지반신소재학회논문집
    • /
    • 제20권2호
    • /
    • pp.35-43
    • /
    • 2021
  • 본 논문에서는 고속철도 교량-열차 상호작용 해석을 위한 단순 3 차원 상호작용 해석모델을 기반으로 하여 정식화한 부구조화 기법 적용 상호작용 해석모델을 제시한다. 부구조화 기법에서는 철도 교량의 상부 구조와 지지 구조를 각각 부구조로 모델링하고, 열차-교량 상호작용 해석을 효율적으로 수행할 수 있다. 열차 해석 모델로는 2차원 열차 모델을 사용하고, Lagrange 운동방정식을 적용하여 2차원 열차의 운동방정식을 유도한다. 부구조화 기법에서는 응축 방법을 사용하여 자유도(Degree of freedom)의 수를 줄일 수 있으므로 고유 값 및 고유 벡터 계산을 위한 소요 시간 및 비용과 후속 계산의 소요시간 및 비용이 줄어든다. 본 논문에서는 부구조화 기법으로 Guyan 감소 방법을 사용한다. 단순 3 차원 교량-열차 상호작용 해석과 Guyan 감소 방법을 결합하여 효율적이고 정확한 교량-열차 상호작용 해석을 수행할 수 있다.