• Title/Summary/Keyword: High-resolution x-ray photoelectron spectroscopy

Search Result 49, Processing Time 0.036 seconds

Atomic layer chemical vapor deposition of Zr $O_2$-based dielectric films: Nanostructure and nanochemistry

  • Dey, S.K.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.64.2-65
    • /
    • 2003
  • A 4 nm layer of ZrOx (targeted x-2) was deposited on an interfacial layer(IL) of native oxide (SiO, t∼1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 30$0^{\circ}C$. Some as-deposited layers were subjected to a post-deposition, rapid thermal annealing at $700^{\circ}C$ for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous $ZrO_2$-rich Zr silicate containing about 15% by volume of embedded $ZrO_2$ nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-$ZrO_2$(t-$ZrO_2$) and monoclinic-$ZrO_2$(m-$ZrO_2$) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper Si $o_2$-rich Zr silicate and the lower $SiO_{x}$. The latter was sub-toichiometric and the average oxidation state increased from Si0.86$^{+}$ in $SiO_{0.43}$ (as-deposited) to Si1.32$^{+}$ in $SiO_{0.66}$ (annealed). This high oxygen deficiency in $SiO_{x}$ indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor(MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of $ZrO_2$ and $SiO_2$, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multi-layer nanostructure and nanochemistry that evolves.ves.ves.

  • PDF

Surface properties of Nb oxide thin films prepared by rf sputtering

  • Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.306.2-306.2
    • /
    • 2016
  • Niobium oxide thin films were synthesized by reactive rf magnetron sputtering. The target was metallic niobium with 2 inch in diameter and the substrate was n-type Si wafer. To control the surface properties of the films, Nb oxide thin films were obtained at various mixing ratios of argon and oxygen gases. Nb oxide thin films were analyzed with alpha step, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The result of alpha step showed that the thickness of Nb oxide thin films were decreased with increasing the oxygen gas ratios. SEM images showed that the granular morphology was formed at 0% of oxygen gas ratio and then disappeared at 20 and 75% of oxygen gas ratio. The amorphous Nb oxide was observed by XRD at all films. The oxidation state of Nb and O were studied with high resolution Ni 2p and O 1s XPS spectra. And the change in the chemical environment of Nb oxide thin films was investigated by XPS with Ar+ sputtering.

  • PDF

Advanced Analysis Techniques for Oxide Cathodes

  • Je, Jung-Ho;Kim, In-Woo;Seol, Seung-Kwon;Kwon, Yong-Bum;Cho, Chang-Sik;Weon, Byung-Mook;Park, Gong-Seog;Hwang, Cheol-Ho;Hwu, Yeukuang;Tsai, Wen-Li
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1155-1156
    • /
    • 2003
  • The advanced analysis techniques such as high resolution X-ray absorption spectroscopy (XAS), X-ray scattering, and photoelectron emission microscope (PEEM) using synchrotron radiation are probably able to open new opportunities for improving the performances of oxide cathodes with more clear and deep understanding.

  • PDF

Electronic Structure of Ce-doped ZrO2 Film: Study of DFT Calculation and Photoelectron Spectroscopy

  • Jeong, Kwang Sik;Song, Jinho;Lim, Donghyuck;Kim, Hyungsub;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • In this study, we evaluated the change of electronic structure during redox process in cerium-doped $ZrO_2$ grown by sol gel method. By sol-gel method, we could obtain cerium-doped $ZrO_2$ in high oxygen partial pressure and low temperature. After post annealing process in nitrogen ambient, the film is deoxidized. We used spectroscopic and theoretical methods to analysis change of electronic structure. X-ray absorption spectroscopy (XAS) for O K1-edge and Density Functional Theory (DFT) calculation using VASP code were performed to verify the electronic structure of the film. Also, high resolution x-ray photoelectron spectroscopy (HRXPS) for Ce 3d was carried out to confirm chemical bond of cerium doped $ZrO_2$. Through the investigation of the electronic structure, we verified as followings. (1) During reduction process, binding energy of oxygen is increase. Simultaneously, oxidation state of cerium was change to 4+ to 3+. (2) Cerium 4+ and cerium 3+ states were generated at different energy level. (3) Absorption states in O K edge were mainly originated by Ce 4+ $f_0$ and Ce 3+, while occupied states in valance band were mainly originated from Ce 4+ $f_2$.

Synthesis of graphene nano-sheet without catalysts and substrates using fullerene and spark plasma sintering process

  • Jun, Tae-Sung;Park, No-Hyung;So, Dea-Sup;Lee, Joon-Woo;Lim, Hak-Sang;Ham, Heon;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.27-30
    • /
    • 2013
  • Catalyst-free graphene nano-sheets without substrates have been synthesized using fullerene and a high direct current (dc) pulse in the spark plasma sintering (SPS) process. Graphene nano-sheets were synthesized directly in the gas phase of carbon atoms which are generated from fullerene at a temperature of $600^{\circ}C$. Characterization has been carried out by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).

Fabrication of ZnSn Thin Films Obtained by RF co-sputtering

  • Lee, Seokhee;Park, Juyun;Kang, Yujin;Choi, Ahrom;Choi, Jinhee;Kang, Yong-Cheol
    • Journal of Integrative Natural Science
    • /
    • v.9 no.4
    • /
    • pp.223-227
    • /
    • 2016
  • The Zn, Sn, and ZnSn thin films were deposited on Si(100) substrate using radio frequency (RF) magnetron co-sputtering method. A surface profiler and X-ray photoelectron spectroscopy (XPS) were used to investigate the Zn, Sn, and ZnSn thin films. Thickness of the thin films was measured by a surface profiler. The deposition rates of pure Zn and Sn thin films were calculated with thickness and sputtering time for optimization. From the survey XPS spectra, we could conclude that the thin films were successfully deposited on Si(100) substrate. The chemical environment of the Zn and Sn was monitored with high resolution XPS spectra in the binding energy regions of Zn 2p, Sn 3d, O 1s, and C 1s.

Indium-free Sn based oxide thin-film transistors using a solution process

  • Im, Yu-Seung;Kim, Dong-Rim;Jeong, Ung-Hui;Kim, Si-Jun;Kim, Hyeon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.251-251
    • /
    • 2011
  • 본 연구에서는 Zr이 도핑 된 ZnSnO (ZZTO) 기반의 물질을 액상공정을 이용하여 합성하고, 박막트랜지스터를 제작하였다. 출발 물질로써 지르코늄 클로라이드 (ZrCl4), 아연 아세테이트 디하이드레이트 ($Zn(CH_3COO)_2{\cdot}2H_3O$), 틴 클로라이드 ($SnCl_2$)를 아연과 주석 프리커서의 비율을 4:7로 고정하고, 지르코늄 프리커서의 몰비를 변형시켜 제작하였다. 제작된 솔루션은 0.25몰의 몰 농도로 고정하였다. 솔벤트로는 2-메톡시에탄올 (2-methoxyethanol)을 사용하였으며, 준비된 솔루션은 $0.2{\mu}m$ 필터를 이용하여 필터링을 실시하였다. Heavily doped p+ Si 기판에 열적 산화법을 이용하여 120 nm 두께의 $SiO_2$를 성장시킨 것을 게이트 및 게이트 절연막으로 이용하였으며, 스핀코팅을 이용하여 ZZTO 박막을 코팅하였다. 코팅 된 기판은 $300^{\circ}C$에서 $500^{\circ}C$ 사이로 2시간 열처리를 실시하였으며, 마지막으로 소오스/드레인을 스퍼터링법으로 Al을 증착하였다. Zr 함량비, 열처리 온도, 제작된 솔루션의 온도에 따른 박막단계를 파악하기 위해 X-ray photoelectron spectroscopy (XPS), thermogravimetry differential thermal analyzer (TG-DTA), X-ray diffractometer (XRD), high-resolution transmission electron microscopy (HR-TEM), Hall-effect measurement, UV-Vis spectroscopy 분석을 실시하였으며, 제작된 소자는 semiconductor analyzer (HP4156C)를 이용하여 측정하였다.

  • PDF

Synthesis of Ni-MWCNT by pulsed laser ablation and its water splitting properties (레이저 어블레이션 공정에 의한 Ni-MWCNT 합성 및 물분해 특성)

  • Cho, Kyoungwon;Chae, Hui Ra;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.77-82
    • /
    • 2022
  • Recently, research on the development of low-cost/high-efficiency water electrolysis catalysts to replace noble metal catalysts is being actively conducted. Since overvoltage reduces the overall efficiency of the water splitting device, lowering the overvoltage of the oxygen evolution reaction (OER) is the most important task in order to generate hydrogen more efficiently. Currently, noble metal catalysts show excellent characteristics in OER performance, but they are experiencing great difficulties in commercialization due to their high price and efficiency limitations due to low reactivity. In this study, a water electrolysis catalyst Ni-MWCNT was prepared by successfully doping Ni into the MWCNTs structure through the pulsed laser ablation in liquid (PLAL) process. High resolution-transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) were performed for the structure and chemical composition of the synthesized Ni-MWCNT. Catalytic oxygen evolution reaction evaluation was performed by linear sweep voltammetry (LSV) overvoltage characteristics, Tafel slope, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Chronoamperometry (CA) was used for measurement.

Reset-first Resistance Switching Mechanism of HfO2 Films Based on Redox Reaction with Oxygen Drift-Diffusion

  • Kim, Jong-Gi;Lee, Sung-Hoon;Lee, Kyu-Min;Na, Hee-Do;Kim, Young-Jae;Ko, Dae-Hong;Sohn, Hyun-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.286-287
    • /
    • 2012
  • Reset-first resistive switching mechanism based on reduction reaction in HfO2-x with oxygen drift-diffusion was studied. we first report that the indirect evidence of local filamentary conductive path formation in bulk HfO2 film with local TiOx region at Ti top electrode formed during forming process and presence of anion-migration at interface between electrode and HfO2 during resistive switching through high resolution transmission electron microscopy (HRTEM), electron disperse x-ray (EDX), and electron energy loss spectroscopy (EELS) mapping. Based on forming process mechanism, we expected that redox reaction from Ti/HfO2 to TiOx/HfO2-x was responsible for an increase of initial current with increasing the post-annealing process. First-reset resistive switching in above $350^{\circ}C$ annealed Ti/HfO2 film was exhibited and the redox phenomenon from Ti/HfO2 to TiOx/HfO2-x was observed with high angle annular dark field (HAADF) - scanning transmission electron microscopy (STEM), EDX and x-ray photoelectron spectroscopy. Therefore, we demonstrated that the migration of oxygen ions at interface region under external electrical bias contributed to bipolar resistive switching behavior.

  • PDF

Surface Characterization of $\beta$-Sialon Powder Prepared from Hadong Kaolin (하동 카올린으로부터 제조한 $\beta$-Sialon 분체의 표면특성)

  • 임헌진;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.961-968
    • /
    • 1991
  • The nature and composition of the surfaces of silicon nitride and β-Sialon powders were investigated using high voltage and high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). β-Sialon powder was produced from Hadong kaolin by the carbothermic reduction and simultaneous nitridation. XPS showed that Al was contained in the surface of β-Sialon powder besides Si, N and O components, which is different from that of silicon nitride. It was supposed that Al in the surface of β-Sialon was bonded with oxygen from the oxygen-nitrogen ratio and the measurement of Al 2p binding energies. After both silicon nitride and β-Sialon powders were oxidized at 800℃ for 24h in air, nitrogen didn't exist in the surfaces and the depth of the oxide layer increased. The measurement of Si 2p binding energies showed that the chemical shifts occurred from Si3N2O and/or Si2N2O to SiO2 phase.

  • PDF