• 제목/요약/키워드: High-resolution climate data

Search Result 213, Processing Time 0.02 seconds

A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models (Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구)

  • Jeon, Hyungyun;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.999-1009
    • /
    • 2019
  • The importance of high-resolution sea ice maps of the Arctic Ocean is increasing due to the possibility of pioneering North Pole Routes and the necessity of precise climate prediction models. In this study,sea ice classification algorithms for two deep learning models were examined using Sentinel-1 A/B SAR data to generate high-resolution sea ice classification maps. Based on current ice charts, three classes (Open Water, First Year Ice, Multi Year Ice) of training data sets were generated by Arctic sea ice and remote sensing experts. Ten sea ice classification algorithms were generated by combing two deep learning models (i.e. Simple CNN and Resnet50) and five cases of input bands including incident angles and thermal noise corrected HV bands. For the ten algorithms, analyses were performed by comparing classification results with ground truth points. A confusion matrix and Cohen's kappa coefficient were produced for the case that showed best result. Furthermore, the classification result with the Maximum Likelihood Classifier that has been traditionally employed to classify sea ice. In conclusion, the Convolutional Neural Network case, which has two convolution layers and two max pooling layers, with HV and incident angle input bands shows classification accuracy of 96.66%, and Cohen's kappa coefficient of 0.9499. All deep learning cases shows better classification accuracy than the classification result of the Maximum Likelihood Classifier.

Estimation of Typhoon Center Using Satellite SAR Imagery (인공위성 SAR 영상 기반 태풍 중심 산정)

  • Jung, Jun-Beom;Park, Kyung-Ae;Byun, Do-Seong;Jeong, Kwang-Yeong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.502-517
    • /
    • 2019
  • Global warming and rapid climate change have long affected the characteristics of typhoons in the Northwest Pacific, which has induced increasing devastating disasters along the coastal regions of the Korean peninsula. Synthetic Aperature Radar (SAR), as one of the microwave sensors, makes it possible to produce high-resolution sea surface wind field around the typhoon under cloudy atmospheric conditions, which has been impossible to obtain the winds from satellite optical and infrared sensors. The Geophysical Model Functions (GMFs) for sea surface wind retrieval from SAR data requires the input of wind direction, which should be based on the accurate estimation of the center of the typhoon. This study estimated the typhoon centers using Sentinel-1A images to improve the problem of typhoon center detection method and to reflect it in retrieving the sea surface wind. The results were validated by comparing with the typhoon best track data provided by the Korea Meteorological Administration (KMA) and Japan Meteorological Agency (JMA), and also by using infrared images of Himawari-8 satellite. The initial center position of the typhoon was determined by using VH polarization, thereby reducing the possibility of error. The detected center showed a difference of 23.76 km on average with the best track data of the four typhoons provided by the KMA and JMA. Compared to the typhoon center estimated by Himawari-8 satellite, the results showed an average spatial variation of 11.80 km except one typhoon located near land with a large difference of 58.73 km. This result suggests that high-resolution SAR images can be used to estimate the center and retrieve sea surface wind around typhoons.

Green Algae Detection in the Middle·Downstream of Nakdong River Using High-Resolution Satellite Data (고해상도 위성영상을 활용한 낙동강 녹조탐지기법 비교 및 분석)

  • Byeon, Yugyeong;Seo, Minji;Jin, Donghyun;Jung, Daeseong;Woo, Jongho;Jeon, Uujin;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.493-502
    • /
    • 2021
  • Recently, because of changes in temperature and rising water temperatures due to increased pollution sources, many algae have been produced in the water system. Therefore, there has been a lot of research using satellite images for the generation and monitoring of green algae. However, in prior studies, it is difficult to consider the optical properties of the local water system by using only a single index, and by using medium and low-resolution satellite images to conduct large-scale algae detection, there is a problem of accuracy in narrow, broad rivers. Therefore, in this work, we utilize high-resolution images of Sentinel-2 satellites to perform green algae detection on a single index (NDVI, SEI, FGAI) and development index (NDVI & SEI, FGAI & SEI) that mixes single indices. In this study, POD, FAR, and PC values were utilized to evaluate the accuracy of green algae detection algorithms, and the FGAI & SEI index showed the highest accuracy with 98.29% overall accuracy PC.

Characteristics of Spectra of Daily Satellite Sea Surface Temperature Composites in the Seas around the Korean Peninsula (한반도 주변해역 일별 위성 해수면온도 합성장 스펙트럼 특성)

  • Woo, Hye-Jin;Park, Kyung-Ae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.632-645
    • /
    • 2021
  • Satellite sea surface temperature (SST) composites provide important data for numerical forecasting models and for research on global warming and climate change. In this study, six types of representative SST composite database were collected from 2007 to 2018 and the characteristics of spatial structures of SSTs were analyzed in seas around the Korean Peninsula. The SST composite data were compared with time series of in-situ measurements from ocean meteorological buoys of the Korea Meteorological Administration by analyzing the maximum value of the errors and its occurrence time at each buoy station. High differences between the SST data and in-situ measurements were detected in the western coastal stations, in particular Deokjeokdo and Chilbaldo, with a dominant annual or semi-annual cycle. In Pohang buoy, a high SST difference was observed in the summer of 2013, when cold water appeared in the surface layer due to strong upwelling. As a result of spectrum analysis of the time series SST data, daily satellite SSTs showed similar spectral energy from in-situ measurements at periods longer than one month approximately. On the other hand, the difference of spectral energy between the satellite SSTs and in-situ temperature tended to magnify as the temporal frequency increased. This suggests a possibility that satellite SST composite data may not adequately express the temporal variability of SST in the near-coastal area. The fronts from satellite SST images revealed the differences among the SST databases in terms of spatial structure and magnitude of the oceanic fronts. The spatial scale expressed by the SST composite field was investigated through spatial spectral analysis. As a result, the high-resolution SST composite images expressed the spatial structures of mesoscale ocean phenomena better than other low-resolution SST images. Therefore, in order to express the actual mesoscale ocean phenomenon in more detail, it is necessary to develop more advanced techniques for producing the SST composites.

The Evaluation of Climate Change Impacts on the Water Scarcity of the Han River Basin in South Korea Using High Resolution RCM Data (고해상도 RCM 자료를 이용한 기후변화가 한강유역의 수자원(이수적 측면)에 미치는 영향 평가)

  • Kim, Soo-Jun;Kim, Byung-Sik;Jun, Hwan-Don;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.295-308
    • /
    • 2010
  • As an attempt to explore the impact of droughts which may be worse by the climate change, the change in the water balance of the Han-river basin is analyzed. To accomplish it, we suggest a procedure consisting of three successive sub-procedures: daily rainfall generation for 70 years by the RegCM3 RCM ($27{\times}27\;km$) with the A2 scenario, daily discharge simulations by SLURP using the generated daily rainfall data, and monthly water balance analysis by K-WEAP (Korean Water Evaluation and Planning System) based on the SLURP simulation. Since significant uncertainty is involved in forecasting the future water consumption and water yields, we assumed three water consumption scenarios and fifty water yields scenarios. Three water consumption scenarios are, namely, "LOW", "MEDIUM", and "HIGH" according to the expected amount of water consumption. The fifty daily discharges are obtained from the SLURP simulations during the drought period. Finally, water balance analysis is performed by K-WEAP based on 150 combinations from three water consumption scenarios and the fifty daily discharges. Analysis of water scarcity in small basins of the Han River basin showed concentration of water scarcity in some small basins. It was also found that water scarcity would increase in all small basins of the Han River basin.

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.

Determination of the Temperature Increasing Value of Seedling Nursery Period for Oryza2000 Model to Applicate Grid Weather Data (Oryza2000 모형 활용을 위한 육묘기 보온 상승온도 결정)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Kwon, Dongwon;Lee, Yunho;Cho, Jung-Il;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • Spatial simulation of crop growth often requires application of management conditions to each cell. In particular, it is of great importance to determine the temperature conditions during the nursery period for rice seedlings, which would affect heading date projections. The objective of this study was to determine the value of TMPSB, which is the parameter of ORYZA2000 model to represent temperature increase under a plastic tunnel during the rice seedling periods. Candidate values of TMPSB including 0℃, 2℃, 5℃, 7℃ and 9℃ were used to simulate rice growth and yield. Planting dates were set from mid-April to mid-June. The simulations were performed at four sites including Cheorwon, Suwon, Seosan, and Gwangju where climate conditions at rice fields common in Korea can be represented. It was found that the TMPSB values of 0℃ and 2℃ resulted in a large variation of heading date due to low temperature occurred in mid-April. When the TMPSB value was >7℃, the variation of heading date was relatively small. Still, the TMPSB value of 5℃ resulted in the least variation of heading date for all the planting dates. Our results suggested that the TMPSB value of 5℃ would help reasonable assessment of climate change impact on rice production when high resolution gridded weather data are used as inputs to ORYZA2000 model over South Korea.

Study on Energy Efficiency Improvement in Manufacturing Core Processes through Energy Process Innovation (에너지 프로세스 혁신을 통한 제조 핵심 공정의 에너지 효율화 방안 연구)

  • Sang-Joon Cho;Hyun-Mu Lee;Jin-Soo Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.43-48
    • /
    • 2023
  • Globally, there is a collaborative effort to achieve global carbon neutrality in response to climate change. In the case of South Korea, greenhouse gas emissions are rapidly increasing, presenting an urgent situation that requires resolution. In this context, this study developed a thermal energy collection device named a 'steam trap' and created an AI model capable of predicting future electricity usage by collecting energy usage data through steam traps. The average accuracy of electricity usage prediction with this AI model was 96.7%, demonstrating high precision. Consequently, the AI model enables the prediction and management of days with high electricity consumption and identifies which facilities contribute to elevated power usage. Future research aims to optimize energy consumption efficiency through efficient equipment operation using anomaly detection in steam traps and standardizing energy management systems, with the ultimate goal of reducing greenhouse gas emissions.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Impervious Surface Estimation Using Landsat-7 ETM+Image in An-sung Area (Landsat-7 ETM+영상을 이용한 안성지역의 불투수도 추정)

  • Kim, Sung-Hoon;Yun, Kong-Hyun;Sohn, Hong-Gyoo;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.529-536
    • /
    • 2007
  • As the Imperious surface is an important index for the estimation of urbanization and environmental change, the increase of impervious surfaces causes meteorological and hydrological changes like urban climate change, urban flood discharge increasing, urban flood frequency increasing, and urban flood modelling during the rainy season. In this study, the estimation of impervious surfaces is performed by using Landsat-7 ETM+ image in An-sung area. The construction of sampling data and checking data is used by IKONOS image. It transform to a tasselled cap and NDVI through the reflexibility rate of Landsat ETM+ image and analyze various variables that influence on impervious surface. Finally, the impervious surfaces map is accomplished by regression tree algorithm.