DOI QR코드

DOI QR Code

The Evaluation of Climate Change Impacts on the Water Scarcity of the Han River Basin in South Korea Using High Resolution RCM Data

고해상도 RCM 자료를 이용한 기후변화가 한강유역의 수자원(이수적 측면)에 미치는 영향 평가

  • Kim, Soo-Jun (Dept. of Civil Engrg., Inha Univ.) ;
  • Kim, Byung-Sik (Water Resources Research Div., Korea Institute of Construction Technology) ;
  • Jun, Hwan-Don (School of Civil Engineering, Seoul National University of Technology) ;
  • Kim, Hung-Soo (Dept. of Civil Engrg., Inha Univ.)
  • 김수전 (인하대학교 토목공학과) ;
  • 김병식 (한국건설기술연구원 수자원연구실) ;
  • 전환돈 (서울산업대학교 토목공학과) ;
  • 김형수 (인하대학교 토목공학과)
  • Published : 2010.03.31

Abstract

As an attempt to explore the impact of droughts which may be worse by the climate change, the change in the water balance of the Han-river basin is analyzed. To accomplish it, we suggest a procedure consisting of three successive sub-procedures: daily rainfall generation for 70 years by the RegCM3 RCM ($27{\times}27\;km$) with the A2 scenario, daily discharge simulations by SLURP using the generated daily rainfall data, and monthly water balance analysis by K-WEAP (Korean Water Evaluation and Planning System) based on the SLURP simulation. Since significant uncertainty is involved in forecasting the future water consumption and water yields, we assumed three water consumption scenarios and fifty water yields scenarios. Three water consumption scenarios are, namely, "LOW", "MEDIUM", and "HIGH" according to the expected amount of water consumption. The fifty daily discharges are obtained from the SLURP simulations during the drought period. Finally, water balance analysis is performed by K-WEAP based on 150 combinations from three water consumption scenarios and the fifty daily discharges. Analysis of water scarcity in small basins of the Han River basin showed concentration of water scarcity in some small basins. It was also found that water scarcity would increase in all small basins of the Han River basin.

본 논문에서는 기후변화가 수자원의 이수측면에서 어떠한 영향을 미치는지에 대하여 검토하고자 한강유역에 대한 물수지 변화를 분석하였다. 이를 위하여, 우선 RegCM3 RCM ($27{\times}27\;km$)의 A2 기후변화 시나리오를 이용하여 모의된 70년의 일강우량을 강우유출모형인 SLURP 모형의 입력자료로 활용하여 70년의 일유출량을 모의하였다. 다음으로 수자원평가계획모형인 K-WEAP 모형을 이용하여 한강유역의 월별 물수지 분석을 실시하였다. 하지만, 미래의 물수요와 기후변화에 의한 유출량을 예측하는 데는 많은 불확실성을 내포하기 때문에 3개의 물수요와 50개의 유출 시나리오를 가정하여 검토하였다. 여기에서, 3개의 물수요 시나리오는 예상되는 물수요에 따라 저수요, 기준수요, 고수요로 구분되며, 50개의 유출 시나리오는 70년 기간 동안 50 set씩 모의된 유출량계열을 의미한다. 따라서 3개의 기후변화 시나리오와 50개의 유출량 시나리오를 조합하여 150 Set의 입력자료를 구성하고 K-WEAP 모형을 이용하여 분석하였다. 검토 결과 미래에 한강유역의 물부족량은 장기적으로 증가하는 것으로 예상되었다. 그리고 한강유역의 소유역별 물부족량을 검토한 결과 특정 소유역에서 물부족이 가중되고 장기적으로 한강유역 전체로 물부족이 예상되는 소유역이 증가함을 확인할 수 있었다.

Keywords

References

  1. 건설교통부(2006). 수자원장기종합계획(2006-2020) 보고서.
  2. 과학기술부(2004). 21세기 프론티어연구개발사업-수자원 지속적 확보기술개발사업-유역통합물수지 분석 및 수자원 계획기술개발, 통합수자원평가계획모형 사용자 안내서.
  3. 과학기술부(2007). 21세기 프론티어연구개발사업-수자원 지속적 확보기술개발사업-기후변화에 의한 수자원 영향평가 체계구축.
  4. 권현한, 김병식, 김보경(2008). “기후변화에 따른 수자원 영향평가를 위한 Regional Climate Model 강수 계열의 특성 분석”. 대한토목학회 논문집, 제28권 제5B호, pp. 525-533.
  5. 권현한, 김병식(2009). “비정상성 Markov Chain Model을 이용한 통계학적 Downscaling 기법 개발”. 한국수자원학회논문집, 제42권, 제3호, pp. 213-225. https://doi.org/10.3741/JKWRA.2009.42.3.213
  6. 김병식, 김형수, 서병하, 김남원(2004). “기후변화가 용담댐 유역의 유출에 미치는 영향”. 한국수자원학회논문집, 제37권, 제3호, pp. 185-193. https://doi.org/10.3741/JKWRA.2004.37.3.185
  7. 배덕효, 정일원, 이병주(2007). “A2시나리오에 따른 국내 수자원의 변동성 전망”. 한국수자원학회논문집, 한국수자원학회, 제40권, 제12호, pp. 921-930.
  8. 안재현, 유철상, 윤용남(2001). “GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석”. 한국수자원학회논문집, 제34권, 제4호, pp. 335-345.
  9. 안소라, 이용준, 박근애, 김성준(2008). “미래토지이용및기후변화에따른하천유역의유출특성분석”. 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 215-224.
  10. 이동률, 김웅태, 유철상(2004). “기후변화가 기상학적 가뭄과 홍수에 미치는 영향”. 한국수자원학회논문집, 한국수자원학회, 제37권, 제4호, pp. 315-328. https://doi.org/10.3741/JKWRA.2004.37.4.315
  11. 환경부(2006). 국제환경현안 대응.해결기술, 기후변화에 의한 물순환의 예측 및 영향 평가.
  12. 황준식, 정대일, 이재경, 김영오(2007). “기후변화 영향평가를 위한 월 물수지모형의 적용성 검토”. 한국수자원학회논문집, 제40권, 제2호, pp. 147-158. https://doi.org/10.3741/JKWRA.2007.40.2.147
  13. Andersson, L., Wilk, J., Todd, M.C., Hughes, D.A., Earle, A., Kniveton, D., Layberry, R., and Savenije, H.G. (2006). “Impact of climate change and development scenarios on flow patterns in the Okavango River”. Journal of Hydrology, Vol. 331, pp. 43-57. https://doi.org/10.1016/j.jhydrol.2006.04.039
  14. Bronstert, A., Burger, G., Heidenreich, M., Katzenmaier, D., and Kohler, B. (1999). “Effect of climate change influencing storm runoff generation: Basic considerations and a pilot study in Germany”. Proceedings of the International RIBAMOD Workshop, Wallingford.
  15. Cooley, K.R., Flerchinger, G.N., Wight, J.R., and Hanson, C.L. (1992). “Effect of Climate Changes On Water Supplies Managing Water Resources During Change”. Journal of American Water Resources Association, Vol. 28, pp. 185-194.
  16. Gleick, P.H. (1986). “Methods for evaluating the regional hydrologic impacts of global climatic changes”. Journal of Hydrology. Vol. 88, pp. 97-116. https://doi.org/10.1016/0022-1694(86)90199-X
  17. Gleick, P.H. (1987). “The development and testing of a water-balance model for climate impact assessment: Modeling the Sacramento Basin”. Water Resources Research. Vol. 23, pp. 1049-1061. https://doi.org/10.1029/WR023i006p01049
  18. Grell, G.A. (1993). “Prognostic evaluation of assumptions used by cumulus parameterizations”. Mon. Wea. Rev., Vol. 121, pp. 764-787. https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
  19. Guo, S., Wang, J., Xiong, L., Ying, A., and Li, D. (2002). “A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China”. Journal of Hydrology, Vol 268, pp. 1-15. https://doi.org/10.1016/S0022-1694(02)00075-6
  20. Hamlet, A.F., and Lettenmaier, D.P. (1999). “Effects of climate change on hydrology and water resources objectives in the Columbia River basin”. Journal of the American Water Resources Association, Vol. 35, pp. 1597-1624. https://doi.org/10.1111/j.1752-1688.1999.tb04240.x
  21. Holtslag, A.A.M., de Bruijin, E.I.F., and Pan, H.L. (1990). “A high resolution air mass transformation model for short-range weather forecasting”. Mon. Wea. Rev., Vol. 118, pp. 1561-1575. https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2
  22. IPCC (2001). Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
  23. IPCC (2007). “Climate Change 2007”, the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change.
  24. Jha, M., Arnold, J.G., Gassman, P.W., and Gu, R. (2004). “Climate change sensitivity assessment on upper Mississippi river basin streamflows using SWAT.”, Working Paper 04-WP 353, Center for Agricultural and Rural Development Iowa State University.
  25. Jha, M., Pan, Z., Takle, E.S., and Gu, R. (2003). “The impacts of climate change on stream flow in the upper Mississippi river basin: A regional climate model perspective”. Journal of Geophysical Research, Vol. 109.
  26. Jonathan, I.M., Graciana, P., and Kenneth, M.M., (2004). “Evaluation of the impact of climate change on hydrology and water resources in Swaziland: Part I”. Physics and Chemistry of the Earth, 29, 1181-1191. https://doi.org/10.1016/j.pce.2004.09.033
  27. Kiehl, J.T., Hack, J.J., Bonan, G.B., Boville, B.A., Briegleb, B.P., Williamson, D.L., and Rasch, P.J. (1996). “Description of the NCAR Community Climate Model (CCM3)”. NCAR Technical Note. Boulder, Colorado.
  28. Kim, Byung Sik, Kim, Hung Soo, Seoh, Byung Ha, and Kim, Nam Won (2007). “Impact of Climate Change on Water Resources in Yongdam Dam Basin, Korea”. Stochastic Environmental Research and Risk Assessment, Vol. 21 (4), pp. 355-357 https://doi.org/10.1007/s00477-006-0070-5
  29. Kite, G.W., (2007). Manual for the SLURP Hydrologic Model version 12.7
  30. McCabe, G.J., and Wolock, D.M. (1999). “General Circulation Model Simulations of Future Snowpack in the Western United States”. Journal of the American Water Resources Association, Vol. 35, pp. 1473-1484. https://doi.org/10.1111/j.1752-1688.1999.tb04231.x
  31. Miller, J.R., Russell, G.L., Van, B., and Scoott, C., (1992). “The Effects of Climate Change On Monthly River Runoff”. Managing Water Resources During Global Change, pp. 175-178.
  32. Purkey, D.R., Joyce, B., Vicuna, S., Hanemann, M.W., Dale, L.L., Yates, D., and Dracup, J.A., (2008). “Robust analysis of future climate change impacts on water for agriculture and other sectors: a case study in the Sacramento Valley”. Climatic Change, 87 (Suppl 1) : S109-S122. https://doi.org/10.1007/s10584-007-9375-8
  33. Roald L.A., Skaugen, T.E., Beldring, S., Væringstad, T., Engeset, R., and Forland, E. J. (2003). “Scenaris of annual and seasonal runoff for Norway”. European Geophysical Society, Vol. 5, 10395.
  34. Stewart, I.T., Cayan, D.R., and Dettinger, M.D. (2005). “Changes towards earlier streamflow timing across Western North America”. Journal of Climate 18: 1136-1155. https://doi.org/10.1175/JCLI3321.1
  35. Yates, D.N., and Strzepek, K.M. (1998). “Modeling the Nile Basin Under Climate Change”. Journal of Hydrologic Engineering, Vol. 3, No. 2, pp. 98-108. https://doi.org/10.1061/(ASCE)1084-0699(1998)3:2(98)

Cited by

  1. Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea vol.19, pp.2, 2015, https://doi.org/10.1007/s12205-015-0446-5
  2. Assessment of Agricultural Water Supply Capacity Using MODSIM-DSS Coupled with SWAT vol.33, pp.2, 2013, https://doi.org/10.12652/Ksce.2013.33.2.507
  3. Regional Frequency Analysis for Future Precipitation from RCP Scenarios vol.17, pp.1, 2015, https://doi.org/10.17663/JWR.2015.17.1.080
  4. The Estimation of Future Pump Capacity on the Urban Drainage System using Climate Change Scenario(RCP) vol.13, pp.2, 2013, https://doi.org/10.9798/KOSHAM.2013.13.2.299
  5. Water Quality Analysis of Hongcheon River Basin Under Climate Change vol.17, pp.4, 2015, https://doi.org/10.17663/JWR.2015.17.4.348
  6. Impact of Climate Change on Habitat of the Rhynchocypris Kumgangensis in Pyungchang River vol.15, pp.2, 2013, https://doi.org/10.17663/JWR.2013.15.2.271
  7. Water Balance Projection Using Climate Change Scenarios in the Korean Peninsula vol.46, pp.8, 2013, https://doi.org/10.3741/JKWRA.2013.46.8.807
  8. Evaluation of Hybrid Downscaling Method Combined Regional Climate Model with Step-Wise Scaling Method vol.46, pp.6, 2013, https://doi.org/10.3741/JKWRA.2013.46.6.585
  9. The Impacts of Climate Change on Paddy Water Demand and Unit Duty of Water using High-Resolution Climate Scenarios vol.54, pp.2, 2012, https://doi.org/10.5389/KSAE.2012.54.2.015
  10. Impact of Changes in Climate and Land Use/Land Cover Change Under Climate Change Scenario on Streamflow in the Basin vol.21, pp.2, 2013, https://doi.org/10.7319/kogsis.2013.21.2.107
  11. A New Way for Incorporating GCM Information into Water Shortage Projections vol.7, pp.5, 2015, https://doi.org/10.3390/w7052435
  12. Analysis of Future Hydrological Cycle considering the Impact of Climate Change and Hydraulic Structures in Geum River Basin vol.14, pp.5, 2014, https://doi.org/10.9798/KOSHAM.2014.14.5.299
  13. Seasonal Drought Damage Prediction Method Based On the Climate Forecasting Data in Geum River Basin vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.83
  14. A Study on Water Supply and Demand Prospects for Water Resources Planning vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.589