DOI QR코드

DOI QR Code

Estimation of Typhoon Center Using Satellite SAR Imagery

인공위성 SAR 영상 기반 태풍 중심 산정

  • Jung, Jun-Beom (Department of Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University) ;
  • Byun, Do-Seong (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • Jeong, Kwang-Yeong (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • Lee, Eunil (Ocean Research Division, Korea Hydrographic and Oceanographic Agency)
  • 정준범 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과/해양연구소) ;
  • 변도성 (국립해양조사원 해양과학조사연구실) ;
  • 정광영 (국립해양조사원 해양과학조사연구실) ;
  • 이은일 (국립해양조사원 해양과학조사연구실)
  • Received : 2019.10.10
  • Accepted : 2019.10.28
  • Published : 2019.10.31

Abstract

Global warming and rapid climate change have long affected the characteristics of typhoons in the Northwest Pacific, which has induced increasing devastating disasters along the coastal regions of the Korean peninsula. Synthetic Aperature Radar (SAR), as one of the microwave sensors, makes it possible to produce high-resolution sea surface wind field around the typhoon under cloudy atmospheric conditions, which has been impossible to obtain the winds from satellite optical and infrared sensors. The Geophysical Model Functions (GMFs) for sea surface wind retrieval from SAR data requires the input of wind direction, which should be based on the accurate estimation of the center of the typhoon. This study estimated the typhoon centers using Sentinel-1A images to improve the problem of typhoon center detection method and to reflect it in retrieving the sea surface wind. The results were validated by comparing with the typhoon best track data provided by the Korea Meteorological Administration (KMA) and Japan Meteorological Agency (JMA), and also by using infrared images of Himawari-8 satellite. The initial center position of the typhoon was determined by using VH polarization, thereby reducing the possibility of error. The detected center showed a difference of 23.76 km on average with the best track data of the four typhoons provided by the KMA and JMA. Compared to the typhoon center estimated by Himawari-8 satellite, the results showed an average spatial variation of 11.80 km except one typhoon located near land with a large difference of 58.73 km. This result suggests that high-resolution SAR images can be used to estimate the center and retrieve sea surface wind around typhoons.

지구온난화와 급속한 기후 변화는 북서 태평양 내 태풍의 특성에 오랫동안 영향을 미쳤고, 이로 인해 한반도 연안에서 치명적인 재해가 증가하고 있다. 마이크로파 센서의 일종인 Synthetic Aperature Radar (SAR)는 위성 광학 및 적외선 센서로는 바람을 구할 수 없는, 흐린 대기 조건인 태풍 주위에서 고해상도 바람장을 생산할 수 있다. SAR 자료로부터 해상풍을 산출하기 위한 Geophysical Model Functions (GMFs)에는 풍향 입력이 필수적이며, 이는 태풍 중심을 정확히 추정하는 것에 기반해야 한다. 본 연구는 태풍 중심 탐지 방법의 문제점을 개선하고 이를 해상풍 산출에 반영하기 위하여, Sentinel-1A 영상을 이용해 태풍 중심을 추정하였다. 그 결과는 한국 및 일본 기상청이 제공한 태풍 경로자료와 비교하여 검증하였고, Himawari-8 위성의 적외 영상도 활용하여 검증하였다. 태풍의 초기 중심 위치는 VH 편파를 이용해 설정하여 오차의 발생 가능성을 줄였다. 탐지된 중심은 한국 및 일본 기상청에서 제공하는 4개 태풍의 경로 자료와 평균 23.76 km의 차이를 보였다. Himawari-8 위성에서 추정된 태풍 중심에 비교했을 때 결과는 육지 근처에 위치하면서 58.73 km의 큰 차이를 보인 한 태풍을 제외하고는 평균 11.80 km의 공간 변이를 보였다. 이는 고해상도 SAR 영상이 태풍 중심을 추정하고 태풍 주위 해상풍 산출에 활용될 수 있음을 시사한다.

Keywords

References

  1. Arnold, C.P., 1977, Tropical cyclone cloud and intensity relationships, Department of Atmospheric Science, Paper No. 277, Colorado State University, Fort Collins, Colorado, 154 pp.
  2. Bell, S.S., Chand, S.S., Camargo, S.J., Tory, K.J., Turville, C., and Ye, H., 2019, Western North Pacific Tropical Cyclone Tracks in CMIP5 Models: Statistical Assessment Using a Model-Independent Detection and Tracking Scheme, Journal of Climate, 32(21), 7191-7208. https://doi.org/10.1175/JCLI-D-18-0785.1
  3. Colbert, A.J., Soden, B.J., and Kirtman, B.P., 2015, The Impact of Natural and Anthropogenic Climate Change on Western North Pacific Tropical Cyclone Tracks, Journal of Climate, 28(5), 1806-1823. https://doi.org/10.1175/JCLI-D-14-00100.1
  4. Daubechies, I., 1988, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41, 909-996. https://doi.org/10.1002/cpa.3160410705
  5. Davies, E.R., 1987, The effect of noise on edge orientation computations, Pattern Recognition Letters, 6(5), 315-322. https://doi.org/10.1016/0167-8655(87)90014-6
  6. Du, Y., Vachon, P.W., and Wolfe, J., 2002, Wind direction estimation from SAR images of the ocean using wavelet analysis, Canadian Journal of Remote Sensing, 28(3), 498-509. https://doi.org/10.5589/m02-029
  7. Du, Y., and Vachon, P.W., 2003, Characterization of hurricane eyes in RADARSAT-1 images with wavelet analysis, Canadian Journal of Remote Sensing, 29(4), 491-498. https://doi.org/10.5589/m03-020
  8. Du, Y., Vachon, P.W., and van der Sanden, J.J., 2003, Satellite image fusion with multiscale wavelet analysis for marine applications: preserving spatial information and minimizing artifacts (PSIMA), Canadian Journal of Remote Sensing, 29(1), 14-23. https://doi.org/10.5589/m02-079
  9. Dvorak, V.F., 1975, Tropical Cyclone Intensity Analysis and Forecasting from Satellite Imagery, Monthly Weather Review, 103, 420-430. https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2
  10. Emanuel, K., 2001, Contribution of tropical cyclones to meridional heat transport by the oceans, Journal of Geophysical Research, 106(D14), 14771-14781. https://doi.org/10.1029/2000JD900641
  11. Emanuel, K., 2005, Increasing destructiveness of tropical cyclones over the past 30years, Nature, 436, 686-688. https://doi.org/10.1038/nature03906
  12. Fernandez, D., Carswell, J., Frasier, S.J., Chang, P., Black, P., and Marks, F., 2006, Dual-polarized C- and Ku-band ocean backscatter response to hurricane-force winds, Journal of Geophysical Research, 111, C08013. https://doi.org/10.1029/2005JC003048
  13. Fett, R.W., 1966, Life cycle of tropical cyclone Judy as revealed by ESSA II and NIMBUS II, 94, 605-610. https://doi.org/10.1175/1520-0493(1966)094<0605:LCOTCJ>2.3.CO;2
  14. Fritz, S., Hubert, L.F., and Timchalk, A., 1966, Some Inferences From Satellite Pictures of Tropical Disturbances, Monthly Weather Review, 94(4), 231-236. https://doi.org/10.1175/1520-0493(1966)094<0231:SIFSPO>2.3.CO;2
  15. Horstmann, J., Koch, W., Lehner, S., and Tonboe, R., 2000, Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization, IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2122-2131. https://doi.org/10.1109/36.868871
  16. Horstmann, J., Koch, W., Lehner, S., and Tonboe, R., 2002, Ocean winds from RADARSAT-1 ScanSAR, Canadian Journal of Remote Sensing, 28(3), 524-533. https://doi.org/10.5589/m02-043
  17. Horstmann, J., Falchetti, S., Wackerman, C., Maresca, S., Caruso, M.J., and Graber, H.C., 2015, Tropical cyclone winds retrieved from C-band cross-polarized synthetic aperture radar, IEEE Transactions on Geoscience and Remote Sensing, 53, 2887-2898. https://doi.org/10.1109/TGRS.2014.2366433
  18. Hwang, P.A., Zhang, B., and Perrie, W., 2010, Depolarized radar return for breaking wave measurement and hurricane wind retrieval, Geophysical Research Letters, 37, L01604. https://doi.org/10.1029/2009GL041780
  19. Hwang, P.A., Perrie, W., and Zhang, B., 2014, Cross-polarization radar backscattering from the ocean surface and its dependence on wind velocity, IEEE Transactions on Geoscience and Remote Sensing Letters, 11, 2188-2192. https://doi.org/10.1109/LGRS.2014.2324276
  20. Isoguchi, O. and Shimada, M., 2009, An L-band ocean geophysical model function derived from PALSAR. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 1925-1936. https://doi.org/10.1109/TGRS.2008.2010864
  21. Jin, S., Li, X., Yang, X., Zhang, J.A., and Shen, D., 2019, Identification of Tropical Cyclone Centers in SAR Imagery Based on Template Matching and Particle Swarm Optimization Algorithms, IEEE Transactions on Geoscience and Remote Sensing, 57(1), 598-608. https://doi.org/10.1109/tgrs.2018.2863259
  22. Kanopoulos, N., Vasanthavada, N., and Baker, R.L., 1988, Design of an image edge detection filter using the Sobel operator, IEEE Journal of Solid-State Circuits, 23(2), 358-367. https://doi.org/10.1109/4.996
  23. Kishimoto, K., Nishigaki, T., Nishimura, S., and Terasaka, Y., 2007, Comparative Study on Organized Convective Cloud Systems Detected through Early Stage Dvorak Analysis and Tropical Cyclones in Early Developing Stage in the Western North Pacific and the South China Sea, RSMC Tokyo-Typhoon Center Technical Review, 9, 19-32.
  24. Kunitsugu, M., 2012, Tropical Cyclone Information Provided by the Rsmc Tokyo-Typhoon Center, Tropical Cyclone Research and Review, 1(1), 51-59.
  25. Kurihara, Y., Murakami, H., and Kachi, M., 2016, Sea surface temperature from the new Japanese geostationary meteorological Himawari8 satellite, Geophysical Researach Letters, 43, 1234-1240. https://doi.org/10.1002/2015GL067159
  26. Lee, M., Lee, S., Lee, J., and Han, S.W., 2019, Predictiong Maximum Wind Speed of Typhoons based on Convolutional Recurrent Neural Network via COMS Satellite Data, Journal of the Korean Institute of Industrial Engineers, 45(4), 349-360. https://doi.org/10.7232/JKIIE.2019.45.4.349
  27. Li, X.M. and Lehner, S., 2013, Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEM-X data, IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2928-2939. https://doi.org/10.1109/TGRS.2013.2267780
  28. Lyvers, E.P., and Mitchell, O.R., 1988, Precision edge contrast and orientation estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6), 927-937. https://doi.org/10.1109/34.9114
  29. Mann, M.E., and Emanuel, K.A., 2006, Atlantic hurricane trends linked to climate change, Eos Transaction American Geophysical Union, 87(24), 233-241. https://doi.org/10.1029/2006EO240001
  30. Melsheimer, C., Alpers, W., and Gade, M., 1998, Investigation of multifrequency/multipolarization radar signatures of rain cells over the ocean using SIRC/XSAR data, Journal of Geophysical Research, 103(C9), 18867-18884. https://doi.org/10.1029/98JC00779
  31. Molinari, J., Skubis, S., Vollaro, D., Alsheimer, F., and Willoughby, H.E., 1998, Potential Vorticity Analysis of Tropical Cyclone Intensification, Journal of the Atmospheric Sciences, 55, 2632-2644. https://doi.org/10.1175/1520-0469(1998)055<2632:PVAOTC>2.0.CO;2
  32. Monaldo, F., Thompson, D., Beal, R., Pichel, W., and ClementeColon, P., 2002, Comparison of SARderived wind speed with model predictions and ocean buoy measurements, IEEE Transactions on Geoscience and Remote Sensing, 39(12), 2587-2600.
  33. Olander, T.L., and Velden, C.S., 2007, The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery, Weather and Forecasting, 22, 287-298. https://doi.org/10.1175/WAF975.1
  34. Park, D.-S. R., Ho, C.-H., Chan, J.C.-L., Ha, K.-J., Kim, H.-S., Kim, J., and Kim, J.-H., 2017, Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections, Scientific Reports, 7, 41354.
  35. Reppucci, A., Lehner, S., Schulz-Stellenfleth, J., and Yang, C.-S., 2008, Extreme wind conditions observed by satellite synthetic aperture radar in the North West Pacific, International Journal of Remote Sensing, 29(21), 6129-6144. https://doi.org/10.1080/01431160802175504
  36. Reppucci, A., Lehner, S., Schulz-Stellenfleth, J., and Brusch, S., 2010, Tropical Cyclone Intensity Estimated from Wide Swath SAR Images, IEEE Transactions on Geoscience and Remote Sensing, 48(4), 1639-1649. https://doi.org/10.1109/TGRS.2009.2037143
  37. Romeiser, R., Graber, H.C., Caruso, M.J., Jensen, R.E., Walker, D.T., and Cox, A.T., 2015, A New Approach to Ocean Wave Parameter Estimates From C-Band ScanSAR Images, IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1320-1345. https://doi.org/10.1109/TGRS.2014.2337663
  38. Shao, W., Li, X., Hwang, P., Zhang, B., and Yang, X., 2017, Bridging the gap between cyclone wind and wave by Cband SAR measurements, Journal of Geophysical Research: Oceans, 122, 6714-6724. https://doi.org/10.1002/2017jc012908
  39. Shen, H., Perrie, W., He, Y., and Liu, G., 2014, Wind Speed Retrieval From VH Dual-Polarization RADARSAT-2 SAR Images, IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5820-5826. https://doi.org/10.1109/TGRS.2013.2293143
  40. Vachon, P.W., and Dobson, F.W., 2000, Wind Retrieval from RADARSAT SAR Images: Selection of a Suitable C-Band HH Polarization Wind Retrieval Model, Canadian Journal of Remote Sensing, 26(4), 306-313. https://doi.org/10.1080/07038992.2000.10874781
  41. Vachon, P.W., and Wolfe, J., 2011, C-Band Cross-Polarization Wind Speed Retrieval, IEEE Geoscience and Remote Sensing Letters, 8(3), 456-459. https://doi.org/10.1109/LGRS.2010.2085417
  42. Velden, C.S., Olander, T.L., and Zehr, R.M., 1998, Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery, Weather and Forecasting, 13, 172-186. https://doi.org/10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2
  43. Velden, C.S., Harper, B., Wells, F., Beven, J.L., Zehr, R., Olander, T., Mayfield, M., Guard, C., Lander, M., Edson, R., Avila, L., Burton, A., Turk, M., Kikuchi, A., Christian, A., Caroff, P., and McCrone, P., 2006, The Dvorak Tropical Cyclone Intensity Estimation Technique: A Satellite-Based Method that Has Endured for over 30 Years, Bulletin of the American Meteorological Society, 87, 1195-1210. https://doi.org/10.1175/bams-87-9-1195
  44. Verspeek, J., Stoffelen, A., Verhoef, A., and Portabella, M., 2012, Improved ASCAT wind retrieval using NWP ocean calibration, IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2488-2494. https://doi.org/10.1109/TGRS.2011.2180730
  45. Webster, P.J., Holland, G.J., Curry, J.A., and Chang, H.-R., 2005, Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment, Science, 309, 1844-1846. https://doi.org/10.1126/science.1116448
  46. Wong, M.L., and Chan, J.C., 2006, Tropical Cyclone Motion in Response to Land Surface Friction, Journal of Atmospheric Sciences, 63, 1324-1337. https://doi.org/10.1175/JAS3683.1
  47. Wu, L., Wang, B., and Geng, S., 2005, Growing typhoon influence on east Asia, Geophysical Research Letters, 32, L18703. https://doi.org/10.1029/2005GL022937
  48. Zhang, B., Perrie, W., and He, Y., 2011, Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model, Journal of Geophysical Research: Atmospheres, 116, C08008. https://doi.org/10.1029/2010jc006522
  49. Zhang, B., and Perrie, W., 2012, Cross-Polarized Synthetic Aperture Radar: A New Potential Measurement Technique for Hurricanes, Bulletin of American Meteorological Society, 93, 531-541. https://doi.org/10.1175/BAMS-D-11-00001.1
  50. Zhang, B., Perrie, W., Zhang, J.A., Uhlhorn, E.W., and He, Y., 2014, High-resolution hurricane vector winds from C-band dual-polarization SAR observations, Journal of Atmospheric and Oceanic Technology, 31(2), 272-286. https://doi.org/10.1175/JTECH-D-13-00006.1
  51. Zhang, G., Li, X., Perrie, W., Hwang, P.A., Zhang, B., and Yang, X., 2017, A Hurricane Wind Speed Retrieval Model for C-Band RADARSAT-2 Cross-Polarization ScanSAR Images, IEEE Transactions on Geoscience and Remote Sensing, 55(8), 4766-4774. https://doi.org/10.1109/TGRS.2017.2699622
  52. Zhang, J.A., and Uhlhorn, E.W., 2012, Hurricane Sea Surface Inflow Angle and an Observation-Based Parametric Model, Monthly Weather Review, 140(11), 3587-3605. https://doi.org/10.1175/MWR-D-11-00339.1
  53. Zhang, K., Xu, X., Han, B., Mansaray, L.R., Guo, Q., and Huang, J., 2017, The Influence of Different Spatial Resolutions on the Retrieval Accuracy of Sea Surface Wind Speed With C-2PO Models Using Full Polarization C-Band SAR, IEEE Transactions on Geoscience and Remote Sensing, 55(9), 5015-5025. https://doi.org/10.1109/TGRS.2017.2700942