• 제목/요약/키워드: High-pressure hydrogen

검색결과 664건 처리시간 0.026초

폴리실리콘용 유동층 반응기에서 탄화규소의 내구성과 적합성 연구 (Endurance and Compatibility of Silicon Carbide as Fluidized Bed Reactor for Poly-silicon)

  • 최균;서진원;한윤수;손민수
    • 한국표면공학회지
    • /
    • 제47권6호
    • /
    • pp.354-361
    • /
    • 2014
  • In order to utilize silicon carbide (SiC) as an inner part of fluidized bed reactor (FBR) for manufacturing poly-silicon, we have carried out the thermodynamic calculation on the overall reactions including poly-silicon synthesis and compatibility of SiC with FBR process. The resources of silicon included $SiH_4(MS)$, $SiHCl_3(TCS)$ and $SiCl_4(STC)$ and the thermodynamic yield of the FBR with MS, TCS and STC were compared each other with variable range of temperature, pressure and hydrogen to silicon ratio. The silicon yield of MS, TCS and STC were 100%, 28% and 4%, respectively, throughout the conventional FBR conditions. Silicon carbide having high hardness and strength showed strong resistance to granule collisions during the FBR process using a lab-scale reactor. And it also showed quite good compatibility with the typical FBR processes of MS and TCS resources.

Influence of Thermodynamic Properties upon Transcritical Nitrogen Injection

  • Tani, Hiroumi;Teramoto, Susumu;Nagashima, Toshio
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.320-329
    • /
    • 2008
  • The influence of thermodynamic transition associated with transcritical nitrogen injection upon the flow structure was investigated to explore numerical simulation of the injectant dynamics of oxygen/hydrogen coaxial jet in liquid rocket engines. Single and coaxial nitrogen jets were treated by comparing the transcritical and perfect-gaseous conditions, wherein the numerical model was accommodative to the real-fluid thermodynamics and transport properties at supercritical pressures. The model was in the first place validated by comparing the results of transcritical nitrogen injection between calculations and available experiments. For a single jet under the transcritical condition, the nitrogen kept a relatively high density up to its pseudo-critical temperature inside the mixing layer, since it remains less expanding until heated up to its pseudo-critical temperature. Numerical analysis revealed that cryogenic jets exhibit strong dependence of specific enthalpy profile upon the associated density profile that are both dominated by turbulent thermal diffusion. In the numerical model, therefore, exact evaluation of turbulent heat fluxes becomes very important for simulating turbulent cryogenic jets under supercritical pressures. Concerning the coaxial jets due to transcritical/gaseous nitrogen injections, the density profile inside the mixing layer was again affected by the thermodynamic transition of nitrogen. However, hydrodynamic instability modes of the inner jet did not show significant differences by this thermodynamic transition, so that further study is needed for the mixing process downstream of the near injection position.

  • PDF

다양한 연료온도 조건에 있어서의 기존 가솔린과 F-T합성 가솔린의 분사율 특성 비교 연구 (A Comparative Study on the Injection Rate Characteristics of Conventional and F-T Synthetic Gasoline Under Various Fuel Temperatures)

  • 손지현;배규한;문석수
    • 한국분무공학회지
    • /
    • 제28권3호
    • /
    • pp.143-149
    • /
    • 2023
  • Amidst the drive towards carbon neutrality, interest in renewable synthetic e-fuels is rising rapidly. These fuels, generated through the synthesis of atmospheric carbon and green hydrogen, offer a sustainable solution, showing advantages like high energy density and compatibility with existing infrastructure. The physical properties of e-fuels can be different from those of conventional gasoline based on manufacturing methods, which requires investigations into how the physical properties of e-fuels affect the fuel injection characteristics. This study performs a comparative analysis between conventional and Fischer-Tropsch (F-T) synthetic gasoline (e-gasoline) across various fuel temperatures, including the cold start condition. The fuel properties of F-T synthetic and conventional gasoline are analyzed using a gas chromatography-mass spectrometry technique and the injection rates are measured using a Bosch-tube injection rate meter. The F-T synthetic gasoline exhibited higher density and kinematic viscosity, but lower vapor pressure compared to the conventional gasoline. Both fuels showed an increase in injection rate as the fuel temperature decreased. The F-T synthetic gasoline showed higher injection rates compared to conventional gasoline regardless of the fuel temperature.

Analysis of loss of cooling accident in VVER-1000/V446 spent fuel pool using RELAP5 and MELCOR codes

  • Seyed Khalil Mousavian;Amir Saeed Shirani;Francesco D'Auria
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3102-3113
    • /
    • 2023
  • Following the Fukushima nuclear disaster, the simulation of accidents in the spent fuel pool has become more noticeable. Despite the low amount of decay heat power, the consequences of the accidents in a spent fuel pool (SFP) can be severe due to the high content of long-lived radionuclides and lack of protection by the pressure vessel. In this study, the loss-of-cooling accident (LOFA) for the VVER-1000/V446 spent fuel pool is simulated by employing RELAP5 and MELCOR 1.8.6 as the best estimate and severe accident analysis codes, respectively. For two cases with different total power levels, decay heat of spent fuels is calculated by ORIGEN-II code. For modeling SFP of a VVER-1000, a qualified nodalizations are considered in both codes. During LOFA in SFP, the key sequences such as heating up of the pool water, boiling and reducing the water level, uncovering the spent fuels, increasing the temperature of the spent fuels, starting oxidation process (generating Hydrogen and extra power), the onset of fuel melting, and finally releasing radionuclides are studied for both cases. The obtained results show a reasonable consistency between the RELAP5 and MELCOR codes, especially before starting the oxidation process.

THE EFFECT OF THE HIGH DENSITY PLASMA ON THE DIAMOND-LIKE CARBON FILMS

  • Kim, H.;D.H. Jung;Park, B.;K. C. Yoo;Lee, J. J.;J. H. Joo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.54-54
    • /
    • 2003
  • DLC films were deposited on Si(100) substrates by inductively coupled plasma (ICP) assisted chemical vapor deposition (CVD). A mixture of acetylene (C$_2$H$_2$) and argon (Ar) gases was used as the precursor and plasma source, respectively. The structure of the films was characterized by the Raman spectroscopy. Results from the Raman spectroscopy analysis indicated that the property change of the DLC films is due to the sp$^3$ and sp$^2$ ratio in the films under various conditions such as ICP power, working pressure and RF substrate bias. The hydrogen content in the DLC films was determined by an electron recoil detector (ERB). The roughness of the films was measured by atomic force microscope (Am). A microhardness tester was used for the hardness and elastic modulus measurement. The DLC film showed a maximum hardness of 37㎬. In this work, the relationship between deposition parameters and mechanical properties were discussed.

  • PDF

Control of Plasma Characteristic to Suppress Production of HSRS in SiH4/H2 Discharge for Growth of a-Si: H Using Global and PIC-MCC Simulation

  • 원임희;권형철;홍용준;이재구
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.312-312
    • /
    • 2011
  • In SiH4/H2 discharge for growth process of hydrogenated amorphous silicon (a-Si:H), silane polymers, produced by SiH2 + Sin-1H2n ${\rightarrow}$ SinH2n+2, have no reactivity on the film-growing surface. However, under the SiH2 rich condition, high silane reactive species (HSRS) can be produced by electron collision to silane polymers. HSRS, having relatively strong reactivity on the surface, can react with dangling bond and form Si-H2 networks which have a close correlation with photo-induced degradation of a-Si:H thin film solar cell [1]. To find contributions of suggested several external plasma conditions (pressure, frequency and ratio of mixture gas) [2,3] to suppressing productions of HSRS, some plasma characteristics are studied by numerical methods. For this study, a zero-dimensional global model for SiH4/H2 discharge and a one-dimensional particle-in-cell Monte-Carlo-collision model (PIC-MCC) for pure SiH4 discharge have been developed. Densities of important reactive species of SiH4/H2 discharge are observed by means of the global model, dealing 30 species and 136 reactions, and electron energy probability functions (EEPFs) of pure SiH4 discharge are obtained from the PIC-MCC model, containing 5 charged species and 15 reactions. Using global model, SiH2/SiH3 values were calculated when pressure and driving frequency vary from 0.1 Torr to 10 Torr, from 13.56 MHz to 60 MHz respectively and when the portion of hydrogen changes. Due to the limitation of global model, frequency effects can be explained by PIC-MCC model. Through PIC-MCC model for pure SiH4, EEPFs are obtained in the specific range responsible for forming SiH2 and SiH3: from 8.75 eV to 9.47 eV [4]. Through densities of reactive species and EEPFs, polymerization reactions and production of HSRS are discussed.

  • PDF

다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구 (Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding)

  • 김태용;이정현;김지현
    • 한국압력기기공학회 논문집
    • /
    • 제13권2호
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.

소합향원(蘇合香元)이 실험적(實驗的) 뇌경색(腦梗塞) 흰쥐의 국소뇌혈류량(局所腦血流量) 및 경색(梗塞) 면적에 미치는 영향(影響) (The Effect of Sohabhyangwon(蘇合香元) on Regional Cerebral Blood Flow and Area of Cerebral Infarction in the Experimentally induced Cerebral Infarction in Rats)

  • 최은정;신길조;이원철
    • 대한한의학회지
    • /
    • 제18권1호
    • /
    • pp.456-469
    • /
    • 1997
  • The cerebral infarction arised from occulsion of cerebral artery has a high mortality rate and fatal sequelae. Sohabhyangwon(蘇合香元) is generally regarded to have a effect of walking up the patient from unconsiousness and promoting the flow of Qj(氣) by warming channel. METHOD The purpose of this study is to find out the effections of Sohabhyangwon(蘇合香元) on regional cerebral blood flow and relative cerebral infarction area in the experimentally induced infartion in rats In this experiment, 12 Spraque-Dawley rats weighting 280-350g were used. Cerebral ischemia induced by intraluminal suture technique of Kozumi's and Zea-Longer's method. $Co_{2},\;O_2$, pH, arterial blood pressure in rats were checked by Blood Gas Analyzer every 30 minutes for 2 hours. And regional cerebral blood flow were checking by hydrogen clearance technique, cerebral infarcted area was megsured by Image Analysis System. RESULTS 1. During the experiment, $CO_{2},\;O_2$, pH, arterial blood pressure in rats had no change in both sample group and control group. 2. Cortical cerebral blood flow decreased at same rate in both sample group and control group after inducing cerebral infarction. 3. On comparison of relative cerebral infarcted area, Sohabhyangwon(蘇合香元) perfused group showed a significant decrease. CONCLUSION According to the result above, Sohabhyangwon has a protection effect on cranial nerve and-has no effect on cerebral blood flow.

  • PDF

천연가스 고체수송 및 저장을 위한 가스 하이드레이트 상평형 조건에 대한 연구 (Phase Equilibrium Conditions of Gas Hydrates for Natural Gas Solid Transportation and Storage)

  • 전용한;김종윤;김종보;김남진
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.266-273
    • /
    • 2008
  • Natural gas hydrates are ice-like solid substances, which are composed of water and natural gas, mainly methane. They have three kinds of crystal structures of five polyhedra formed by hydrogen-bonded water molecules, and are stable at high pressures and low temperatures. They contain large amounts of organic carbon and widely occur in deep oceans and permafrost regions. Therefore, they are expected as a potential energy resource in the future. Especially, $1m^3$ natural gas hydrate contains up to $172Nm^3$ of methane gas, de pending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming natural gas hydrate were numerically obtained in pure water and single electrolyte solution containing 3 wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor. Also, help gases such that ethane, propane, i-butane, and n-butane reduce the hydrate formation pressure at the same temperature.

작동 조건에 따른 고온 고분자 전해질 연료전지의 성능 변화에 대한 전산해석 연구 (Numerical Study of Effects of Operating Conditions on the Performance of High Temperature PEMFC)

  • 김경연;손영준;김민진;양태현
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.283-289
    • /
    • 2010
  • 2차원 전산 해석 모델을 사용하여 고온 고분자 전해질 연료전지의 전산해석을 수행하였다. 해석 모델은 기존의 실험데이터와의 비교를 통해 검증하였으며, 다양한 작동 조건이 연료전지의 성능에 미치는 영향을 파악하기 위해 일련의 전산해석을 수행하였다. 본 전산해석의 결과를 통해 교환전류밀도, 이온전도도, 공급유량 및 작동압력이 증가할수록 연료전지의 성능이 향상됨을 확인하였다. 또한, 기체 확산층의 기공율이 높을수록 기체의 확산이 향상되어 연료전지의 성능이 향상되었으며, 양극 기체 확산층의 기공율에 의한 효과가 음극에 비해 더 두드러지게 나타났다.