DOI QR코드

DOI QR Code

Endurance and Compatibility of Silicon Carbide as Fluidized Bed Reactor for Poly-silicon

폴리실리콘용 유동층 반응기에서 탄화규소의 내구성과 적합성 연구

  • 최균 (한국세라믹기술원 이천분원) ;
  • 서진원 (한국세라믹기술원 이천분원) ;
  • 한윤수 (한국세라믹기술원 이천분원) ;
  • 손민수 ((주)실리콘밸류)
  • Received : 2014.12.06
  • Accepted : 2014.12.18
  • Published : 2014.12.31

Abstract

In order to utilize silicon carbide (SiC) as an inner part of fluidized bed reactor (FBR) for manufacturing poly-silicon, we have carried out the thermodynamic calculation on the overall reactions including poly-silicon synthesis and compatibility of SiC with FBR process. The resources of silicon included $SiH_4(MS)$, $SiHCl_3(TCS)$ and $SiCl_4(STC)$ and the thermodynamic yield of the FBR with MS, TCS and STC were compared each other with variable range of temperature, pressure and hydrogen to silicon ratio. The silicon yield of MS, TCS and STC were 100%, 28% and 4%, respectively, throughout the conventional FBR conditions. Silicon carbide having high hardness and strength showed strong resistance to granule collisions during the FBR process using a lab-scale reactor. And it also showed quite good compatibility with the typical FBR processes of MS and TCS resources.

Keywords

References

  1. 'Photovoltaics Report', from http://www.ise.fraunhofer. de, Freiburg (2014).
  2. 'Global Market Outlook for Photovoltaics 2013- 2017', C. Winneker (ed.) published by EPIA (2012).
  3. G. R. Fisher, M. Kulkarni, ECS Trans. 27 (2010) 1001.
  4. H. Y. Kim, Korean Chem. Eng. Res. 46 (2008) 37.
  5. B. Caussat, M. Hemati, and J. P. Couderc, Chem. Eng. Sci. 50 (1995) 3625. https://doi.org/10.1016/0009-2509(95)00173-3
  6. A. Anselmoa, V. Prasadb, J. Koziolc and K. P. Gupta, J. Cryst. Growth 131 (1993) 247. https://doi.org/10.1016/0022-0248(93)90420-2
  7. C. Wang, H. Zhang, T. Wang and L. Zheng, J. Cryst. Growth 287 (2006) 252. https://doi.org/10.1016/j.jcrysgro.2005.11.016
  8. G. Byea, and B. Ceccaroli, Solar Energy Mater. Solar Cells 130 (2014) 634. https://doi.org/10.1016/j.solmat.2014.06.019
  9. K. S. Cho, S. H. Yoon, H. Chung, S. H. Chae, K. Y. Lim, Y. W. Kim, and S. H. Park, Ceramist 10 (2007) 33.
  10. M. R. Jang, Y. K. Paek, S. M. Lee, J. Kor. Ceram. Soc. 49 (2012) 328. https://doi.org/10.4191/kcers.2012.49.4.328
  11. K. Choi and J. W. Kim, Current Nanoscience 10 (2014) 135. https://doi.org/10.2174/1573413709666131109003414
  12. J. W. Kim, J. W. Seo, K. Choi and J. H. Lee, J. Kor. Soc. Comp. Fluids Eng. 18 (2013) 45.
  13. G. Chichignoud, M. Ucar-Morais, M. Pons, and E. Blanquet, Surf. Coat. Tech. 201 (2007) 8888. https://doi.org/10.1016/j.surfcoat.2007.04.113
  14. Z. Y. Xie, C. H. Wei, L. Y. Li, Q. M. Yu, and J. H. Edgar, J. Cryst. Growth 217 (2000) 115. https://doi.org/10.1016/S0022-0248(00)00480-2
  15. C. Hallin, F. Owman, P. Martensson, A. Ellison, A. Konstantinov, O. Kordina and E. Janzen, J. Cryst. Growth 181 (1997) 141.