• Title/Summary/Keyword: High-pressure hydrogen

Search Result 653, Processing Time 0.029 seconds

Spontaneous Ignition of High Pressure Hydrogen Gas released into Tube due to the Burst Pressure Variation (파열 압력에 따른 튜브 내 고압 수소 누출에 의한 자발점화 현상)

  • Lee, Hyoung Jin;Kim, Sung Don;Kim, Sei Hwan;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.93-96
    • /
    • 2012
  • The spontaneous ignition mechanism of high pressure hydrogen gas released into tube is well-deduced from previous studies. However, those results have a limit because the studies have been conducted at low burst pressure of about 10 MPa. In this study, the process or ignition feature are investigated with higher burst pressure of up to 30 MPa through numerical analysis. The results show that the trend of ignition became to be different with a burst pressure. While two reaction regions is important to initiate the ignition when burst pressure is about 10 MPa, the reaction of the core region does not play a role in ignition inside the tube when a burst pressure is above 20 MPa.

  • PDF

Heat transfer performance of a helical heat exchanger depending on coil distance and flow guide for supercritical cryo-compressed hydrogen

  • Cha, Hojun;Choi, Youngjun;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.62-67
    • /
    • 2022
  • Liquid hydrogen (LH2) has a higher density than gaseous hydrogen, so it has high transport efficiency and can be stored at relatively low pressure. In order to use efficient bulk hydrogen in the industry, research for the LH2 supply system is needed. In the high-pressure hydrogen station based on LH2 currently being developed in Korea, a heat exchanger is used to heat up supercritical hydrogen at 700 bar and 60 K, which is pressurized by a cryogenic high-pressure pump, to gas hydrogen at 700 bar and 300 K. Accordingly, the heat exchanger used in the hydrogen station should consider the design of high-pressure tubes, miniaturization, and freezing prevention. A helical heat exchanger generates secondary flow due to the curvature characteristics of a curved tube and can be miniaturized compared to a straight one on the same heat transfer length. This paper evaluates the heat transfer performance through parametric study on the distance between coils, guide effect, and anti-icing design of helical heat exchanger. The helical heat exchanger has better heat transfer performance than the straight tube exchanger due to the influence of the secondary flow. When the distance between the coils is uniform, the heat transfer is enhanced. The guide between coils increases the heat transfer performance by increasing the heat transfer length of the shell side fluid. The freezing is observed around the inlet of distribution tube wall, and to solve this problem, an anti-icing structure and a modified operating condition are suggested.

A Numerical Study on the Flame Arrestor for Safety Valve of Hydrogen (수소 안전밸브용 역화방지기의 성능 평가에 대한 수치해석 연구)

  • OH, SEUNG JUN;YOON, JEONG HWAN;KIM, SI POM;CHOI, JEONGJU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.391-399
    • /
    • 2022
  • Hydrogen is one of the energy carriers and has high energy efficiency relative to mass. It is an eco-friendly fuel that makes only water (H2O) as a by-product after use. In order to use hydrogen conveniently and safely, development of production, storage and transfer technologies is required and attempts are being made to apply hydrogen as an energy source in various fields through the development of the technology. For transporting and storing hydrogen include high-pressure hydrogen gas storage, a type of storage technologies consist of cryogenic hydrogen liquid storage, hydrogen storage alloy, chemical storage by adsorbents and high-pressure hydrogen storage containers have been developed in a total of four stages. The biggest issue in charging high-pressure hydrogen gas which is a combustible gas is safety and the backfire prevention device is that prevents external flames from entering the tank and prevents explosion and is essential to use hydrogen safely. This study conducted a numerical analysis to analyze the performance of suppressing flame propagation of 2, 3 inch flame arrestor. As a result, it is determined that, where the flame arrestor is attached, the temperature would be lowered below the temperature of spontaneous combustion of hydrogen to suppress flame propagation.

Finite Element Analysis of Hydrogen Concentration for Blister Growth Estimation of CANDU Pressure Tube (CANDU 압력관의 블리스터 성장 예측을 위한 유한요소 수소 확산 해석)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin;Kim, Young-Seok;Cheong, Yong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.189-195
    • /
    • 2004
  • The pressure tubes, which contain high temperature heavy water and fuel, are within the core of a CANDU nuclear reactor, and are thus subjected to high stresses, temperature gradient, and neutron flux. Further, it is well known that pressure tubes of cold-worked Zr-2.5Nb materials result in hydrogen diffusion, which create fully-hydrided regions (frequently called Blister). Thus a proper investigation of hydrogen diffusion within zirconium-alloy nuclear components, such as CANDU pressure tube and fuel channels is essential to predict the structural integrity of these components. In this respect, this paper presents numerical investigation of hydrogen diffusion to quantify the hydrogen concentration fur blister growth of CANDU pressure tube. For this purpose, coupled temperature-hydrogen diffusion analyses are performed by means of two-dimensional finite element analysis. Comparison of predicted temperature field and blister with published test data shows good agreement.

Effect of Surface Condition on Tensile Properties of Fe-30Mn-0.2C-(1.5Al) High-Manganese Steels Hydrogen-Charged Under High Temperature and Pressure (고온-고압 수소 주입된 Fe-30Mn-0.2C-(1.5Al) 고망간강의 인장 거동에 미치는 표면 조건의 영향)

  • Lee, Seung-Yong;Lee, Sang-Hyeok;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.318-324
    • /
    • 2017
  • In this study, two Fe-30Mn-0.2C-(1.5Al) high-manganese steels with different surface conditions were hydrogen-charged under high temperature and pressure; then, tensile testing was performed at room temperature in air. The yield strength of the 30Mn-0.2C specimen increased with decreasing surface roughness(achieved via polishing), but that of the 30Mn-0.2C-1.5Al specimen was hardly affected by the surface conditions. On the other hand, the tendency of hydrogen embrittlement of the two high-manganese steels was not sensitive to hydrogen charging or surface conditions from the standpoints of elongation and fracture behavior. Based on the EBSD analysis results, the small decrease in elongation of the charged specimens for the Fe-30Mn-0.2C-(1.5Al) high-manganese steels was attributed to the enhanced dislocation pile-up around grain boundaries, caused by hydrogen.

The Evaluation of Reliability for the High pressure hydrogen Storage System of Fuel Cell Vehicle(II) (연료전지자동차의 고압수소저장시스템 신뢰성 평가(II))

  • Choi, Young-Min;Kim, Sang-Hyun;Kim, Hyung-Ki;Jang, Gyu-Jin;Ahn, Byung-Ki;Lim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.37-40
    • /
    • 2008
  • We have concentrated on the performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle so far. But for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module. We built the standard to evaluate and collision safety of high pressure storage system for fuel cell vehicle, and could verify reliability of high pressure storage system.

  • PDF

A Study on Air-tightness of High Pressure Liquid Hydrogen Pumping System at the Low Temperature (액체수소용 초저온 고압 피스톤 펌프의 기밀성 향상에 관한 기초연구)

  • Lee, Jonggoo;Lee, Jongmin;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.302-310
    • /
    • 2013
  • As an initial step to develop a liquid hydrogen pump of piston type operated under cryogenic and high pressure, leakage and piston head shape for the piston pump were discussed with temperature and pressure. As the results, the leakage depended on correlation among density, viscosity, clearance area by the low temperature. In order to reduce the leakage, it was found that the air-tightness can be improved by minimizing contact surface between piston and cylinder, and also increasing pressure in-cylinder can reduce piston clearance. Among the proposed piston shapes, D type piston shape had the most air-tightness. D type piston had smaller contact surface than other piston shape and easier expansion of cup shape by pressure. The leakage of D type piston shape was found about 7%, compared with A type piston shape. But it was required that analyze about vapor lock by friction and wear resistance.

Numerical Simulation of Fast Filling of a Hydrogen Tank

  • Suryan, Abhilash;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.353-358
    • /
    • 2010
  • High pressure gas is a widely used storage mode for hydrogen fuel. A typical hydrogen tank that is charged with hydrogen gas can function as a hydrogen supply source in a large number of applications. The filling process of a high-pressure hydrogen tank should be reasonably short. However, when the fill time is short, the maximum temperature in the tank increases. Therefore the process should be designed in such a way to avoid high temperatures in the tank because of safety reasons. The paper simulates the fast filling process of hydrogen tanks using Computational Fluid Dynamics method. The local temperature distribution in the tank is obtained. Results obtained are compared with available experimental data. Further work is going on to improve the accuracy of the calculations.

  • PDF

Formation and Growth Estimation of Blister in Zr-2.5Nb Pressure Tubes based on Finite Element Analysis (유한요소해석을 이용한 지르코늄 압력관의 블리스터 생성 및 성장 해석)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin;Kim, Young-Seok;Cheong, Yong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1133-1138
    • /
    • 2003
  • The pressure tubes, which contain high temperature heavy water and fuel, are within the core of a CANDU nuclear reactor, and are thus subjected to high stresses, temperature gradient, and neutron flux. Further, it is well known that pressure tubes of cold-worked Zr-2.5Nb materials result in hydrogen diffusion, which create fully-hydrided regions (frequently called Blister). Thus a proper investigation of hydrogen diffusion within zirconium-alloy nuclear components, such as CANDU pressure tube and fuel channels is essential to predict the structural integrity of these components. In this respect, this paper presents numerical investigation of hydrogen diffusion to quantify the hydrogen concentration for blister growth of CANDU pressure tube. For this purpose, coupled temperature-hydrogen diffusion analyses are performed by means of two-dimensional finite element analysis. Comparison of predicted temperature field and blister with published test data shows good agreement.

  • PDF

Analysis of Thermal Flow Characteristics according to the Opening Ratio of High-Pressure Valve for Hydrogen Storage Tank (수소 저장 탱크용 고압 밸브의 개도율에 따른 열·유동 특성 분석)

  • JUNG, DA WOON;CHOI, JIN;SUH, HYUN KYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.525-533
    • /
    • 2022
  • In this study, in order to numerically analyze the heat flow characteristics in the valve according to the opening rate for the solenoid valve for hydrogen supply applied to the hydrogen storage tank, flow characteristics were comparatively analyzed. Through the analysis of pressure and temperature distributions within the valve according to the high-pressure supply condition of 70 MPa or more, the heat flow characteristics in the valve, inlet and outlet passage according to the opening rate of the valve were identified. As a result a sudden change in the fluid behavior appears in the neck region of the valve, and it is understood that the flow separation caused by the flow path shape of the expanded tube has a dominant influence on the flow characteristics. And, it was confirmed that the shape of the valve seat is a factor significantly affecting the improvement of flow rate and differential pressure performance.