• 제목/요약/키워드: High-pressure experiment

검색결과 989건 처리시간 0.025초

고온 압축 공정에서 금형과 알루미늄 빌렛의 접촉 열전달 계수 도출에 관한 연구 (A Study on Derivation of Contact Heat Transfer Coefficient Between Die and Aluminum Billet in High Temperature Compression Process)

  • 전효원;서창희;오상균;권태하;강경필;육형섭
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.142-148
    • /
    • 2021
  • In hot forging analysis, the interfacial heat transfer coefficient (IHTC) is a very important factor defining the heat flow between the die and the material. In particular, in the hot forging analysis of aluminum 6xxx series alloy, which are used in automobile parts, differences in load and microstructure occur due to changes in surface temperature according to the IHTC. This IHTC is not a constant value but changes depends on pressure. This study derived the IHTC under low load using aluminum 6082 alloy. An experiment was performed by fabricating a compression die, and a heat transfer analysis was performed based on the experimental data. The heat transfer analysis used DEFORM-2D, a commercial finite element analysis program. To derive the IHTC, heat transfer analysis was performed for the IHTC in the range of 10 to 50 kW/m2℃ at intervals of 10kW/m2℃. The heat transfer analysis results according to the IHTC and the actual experimental values were compared to derive the IHTC of the aluminum 6082 alloy under low load.

Ga2O3초음파분무화학기상증착 공정에서 유동해석을 이용한 균일도 향상 연구 (Computational Fluid Dynamics for Enhanced Uniformity of Mist-CVD Ga2O3 Thin Film)

  • 하주환;이학지;박소담;신석윤;변창우
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.81-85
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity method since the precursor solution is misting with an ultrasonic generator and reacted on the substrate under vacuum-free conditions of atmospheric pressure. However, since the deposition distribution is not uniform, various efforts have been made to derive optimal conditions by changing the angle of the substrate and the position of the outlet to improve the result of the preceding study. Therefore, in this study, a deposition distribution uniformity model was derived through the shape and position of the substrate support and the conditions of inlet flow rate using the particle tracking method of computational fluid dynamics (CFD). The results of analysis were compared with the previous studies through experiment. It was confirmed that the rate of deposition area was improved from 38.7% to 100%, and the rate of deposition uniformity was 79.07% which was higher than the predicted result of simulation. Particle tracking method can reduce trial and error in experiments and can be considered as a reliable prediction method.

VHF-CCP 설비에서 Ar/SF6 플라즈마 분포가 Si 식각 균일도에 미치는 영향 분석 (Analysis of Si Etch Uniformity of Very High Frequency Driven - Capacitively Coupled Ar/SF6 Plasmas)

  • 임성재;이인규;이하늘;손성현;김곤호
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.72-77
    • /
    • 2021
  • The radial distribution of etch rate was analyzed using the ion energy flux model in VHF-CCP. In order to exclude the effects of polymer passivation and F radical depletion on the etching. The experiment was performed in Ar/SF6 plasma with an SF6 molar ratio of 80% of operating pressure 10 and 20 mTorr. The radial distribution of Ar/SF6 plasma was diagnosed with RF compensated Langmuir Probe(cLP) and Retarding Field Energy Analyzer(RFEA). The radial distribution of ion energy flux was calculated with Bohm current times the sheath voltage which is determined by the potential difference between the plasma space potential (measured by cLP) and the surface floating potential (by RFEA). To analyze the etch rate uniformity, Si coupon samples were etched under the same condition. The ion energy flux and the etch rate show a close correlation of more than 0.94 of R2 value. It means that the etch rate distribution is explained by the ion energy flux.

바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가 (Modification of an LPG Engine Generator for Biomass Syngas Application)

  • 엘리에젤 하비네자;홍성구
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

Tapping 가공 온도 최소화를 위해 미스트 노즐 적용 절삭유 공급에 따른 냉각조건 최적화 (Optimization of Cooling Conditions by Supplying Cutting Oil Applied with Mist Nozzle to Minimize Tapping Processing Temperature)

  • 오창혁;김영신;전의식
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.98-104
    • /
    • 2022
  • When processing parts, the cutting oil can improve the cooling performance of the workpiece and tool to increase the precision of the workpiece or extend the life of the tool and facilitate chip extraction. Since such cutting oil has a harmful effect on the environment and the human body due to additives such as sulfur, research on a minimum lubrication supply method using an eco-friendly oil is recently underway. The minimum lubrication supply method minimizes the amount of cutting oil used during processing and processes it, which can reduce the amount of cutting oil used, but has a problem in that cooling performance efficiency is poor. Therefore, this study conducted a study on mist cooling of lubricants to reduce the amount of cutting oil used and maximize the cooling effect of processing heat generated during tapping processing. Spray pressure, processing speed, direction, and lubricant spray amount, which are considered to have an effect on cooling performance, were set as process conditions, and the effect on temperature was analyzed by performing an experiment using the box benquin method among experiments were analyzed. Through the experimental analysis results, the optimal conditions for mist and processing that maximize the cooling effect were derived, and the validity of the results derived through additional experiments was verified. In the case of processing by applying the mist lubrication method verified through this study, it is considered that high-precision processing is possible by improving the cooling effect.

표면 거칠기가 가스 포일 스러스트 베어링의 성능에 미치는 영향 (Effects of Surface Roughness on the Performance of a Gas Foil Thrust Bearing)

  • 황성호;김대연;김태호
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.81-85
    • /
    • 2023
  • This study presents an experimental investigation of the effects of surface roughness on gas foil thrust bearing (GFTB) performance. A high-speed motor with the maximum speed of 80 krpm rotates a thrust runner and a pneumatic cylinder applies static loads to the test GFTB. When the motor speed increases and reaches a specific speed at which a hydrodynamic film pressure generated within the gap between the thrust runner and test GFTB is enough to support the applied static load, the thrust runner lifts off from the test GFTB and the friction mechanism changes from the boundary lubrication to the hydrodynamic lubrication. The experiment shows a series of lift-off test and load-carrying capacity test for two thrust runners with different surface roughnesses. For a constant static load of 15 N, thrust runner A with its lower surface roughness exhibits a higher start-up torque but lower lift-off torque than thrust runner B with a higher surface roughness. The load capacity test at a rotor speed of 60 krpm reveals that runner A results in a higher maximum load capacity than runner B. Runner A also shows a lower drag torque, friction coefficient, and bearing temperature than runner B at constant static loads. The results imply that maintaining a consistent surface roughness for a thrust runner may improve its static GFTB performance.

사출 성형 공정에서의 변수 최적화 방법론 (Methodology for Variable Optimization in Injection Molding Process)

  • 정영진;강태호;박정인;조중연;홍지수;강성우
    • 품질경영학회지
    • /
    • 제52권1호
    • /
    • pp.43-56
    • /
    • 2024
  • Purpose: The injection molding process, crucial for plastic shaping, encounters difficulties in sustaining product quality when replacing injection machines. Variations in machine types and outputs between different production lines or factories increase the risk of quality deterioration. In response, the study aims to develop a system that optimally adjusts conditions during the replacement of injection machines linked to molds. Methods: Utilizing a dataset of 12 injection process variables and 52 corresponding sensor variables, a predictive model is crafted using Decision Tree, Random Forest, and XGBoost. Model evaluation is conducted using an 80% training data and a 20% test data split. The dependent variable, classified into five characteristics based on temperature and pressure, guides the prediction model. Bayesian optimization, integrated into the selected model, determines optimal values for process variables during the replacement of injection machines. The iterative convergence of sensor prediction values to the optimum range is visually confirmed, aligning them with the target range. Experimental results validate the proposed approach. Results: Post-experiment analysis indicates the superiority of the XGBoost model across all five characteristics, achieving a combined high performance of 0.81 and a Mean Absolute Error (MAE) of 0.77. The study introduces a method for optimizing initial conditions in the injection process during machine replacement, utilizing Bayesian optimization. This streamlined approach reduces both time and costs, thereby enhancing process efficiency. Conclusion: This research contributes practical insights to the optimization literature, offering valuable guidance for industries seeking streamlined and cost-effective methods for machine replacement in injection molding.

필름 이송을 위한 진공 롤 외통의 정밀가공 공정개발 (Development of a precision machining process for the outer cylinder of vacuum roll for film transfer)

  • 김의중;이호상
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.1-8
    • /
    • 2024
  • Unlike the roll-to-roll process that uses a steel roll and a nip roll, a vacuum roll can hold and transfer a thin film using a single roll. To precisely manufacture a vacuum roll, a thin outer cylinder must be machined, which is assembled on the outside of the roll and contacts the film via vacuum pressure. In this study, the effects of jaw width and chucking force on the deformation of the outer cylinder during the turning process were investigated using analysis, and a precision machining and burr removal process was developed. The deformation of the outer cylinder decreased almost linearly with increasing jaw width and increased with higher chucking force and larger cylinder diameter. Additionally, the deflection due to the weight of the outer cylinder was approximately three times greater than that caused by film tension. For the machined outer cylinder, a burr removal experiment was conducted, and concentricity and cylindricity were measured. Using a device that removes burrs by rotating a wheel connected to the main shaft at high speed, it was found that burrs generated on the inner diameter could be removed very efficiently. On the vacuum side, the concentricity errors of the inner and outer diameters were 0.015 mm and 0.014 mm, respectively, and on the opposite side, they were 0.006 mm and 0.010 mm, respectively. Additionally, the measurement of Total Indicator Runout (TIR) according to the angle showed that the maximum cylindricity of the outer and inner diameters was 0.02 mm and 0.025 mm, respectively. Finally, through burr-height measurement at the hole boundary, it was found that the heights were within 0.05 mm.

슬러지 유중 건조에 대한 전산 해석 및 실험적 연구 (A Numerical and Experimental Study for Fry-drying of Various Sludge)

  • 신미수;김혜숙;김병갑;황민정;장동순;엄태인
    • 대한환경공학회지
    • /
    • 제32권4호
    • /
    • pp.341-348
    • /
    • 2010
  • 유중 건조 공정의 기본 원리는 수분과 비열차이가 있는 오일을 가열할 때 온도 차이에 따라 형성되는 슬러지 내부의 급격한 압력 변화를 이용한다. 즉 슬러지 내부에 발생하는 급격한 압력 상승이 이루어질 때 슬러지 공극을 통하여 수분이 빠르게 배출하도록 하는 것이다. 본 연구의 목적은 유중 건조공정 중 다양한 운전 변수가 건조효율에 미치는 영향을 구체적으로 규명하기 위한 것이다. 변수 연구를 위하여 일련의 건조 실험과 수치해석을 시도하였으며 그 결과 건조온도, 건조시간, 폐오일종류, 슬러지 종류 등 중요 실험변수에 따른 건조곡선이 얻어졌다. 건조 온도 변화에 따른 연구 결과는 폐오일의 종류에 관계없이 $140^{\circ}C$ 이상으로 운전하는 것이 건조효율에 유리한 것으로 나타났으며 이 결과는 수치 해석적 결과로도 확인되었다. 그리고 슬러지 직경의 경우 직경이 감소할수록 효율적으로 건조되는 경향으로 보였으며 이는 비표면적의 증가에 기인하는 것으로 판단되었다. 오일 종류나 물성의 변화에 대한 연구에서는 오일의 점도가 가시적인 영향을 주는 것으로 나타났다. 특히 점도가 높은 오일의 경우 건조 초반에 수분 증발이 현저히 지체되는 현상이 나타났다. 그러나 건조온도 $140^{\circ}C$ 이상에서는 이러한 지체 현상이 감소하는 결과를 나타내었다. 슬러지 종류에 따른 연구에서는 전체적으로 큰 차이를 나타내지는 않았으나 하수슬러지가 다른 종류의 슬러지에 비하여 좀 더 가시적으로 양호한 수분제거 양상을 나타내었다. 수치 해석적 연구는 실험적 연구에 대한 상호보완적인 연구로서 가능성을 보였으나 복잡한 세부모델에 대한 경험적인 모델개발의 필요성이 제기되었다.

정상흐름 하에서 스포일러 부착형 해저파이프라인의 자가매설 기구에 관한 수치해석 (Numerical Analysis on Self-Burial Mechanism of Submarine Pipeline with Spoiler under Steady Flow)

  • 이우동;허동수;김한솔;조효제
    • 한국해안·해양공학회논문집
    • /
    • 제28권3호
    • /
    • pp.146-159
    • /
    • 2016
  • 본 연구에서는 정상흐름 하에서 스포일러가 부착된 해저파이프라인의 자가매설 기구를 분석하기 위하여 유체역학적 특성을 고정도로 해석할 수 있는 Navier-Stokes Solver(LES-WASS-2D)를 이용하였다. 본 논문에서 적용하는 수치모형의 타당성 및 유효성을 확보하기 위하여 기존의 스포일러 유무에 따른 파이프라인 주변의 흐름특성을 나타낸 수리모형실험결과와 비교 분석하였다. 그리고 입사유속, 스포일러의 제원 및 배치에 따른 파이프라인 주변의 수리특성(유동, 와동, 압력)과 작용력 특성을 수치적으로 분석하였다. 그 결과 1차적으로 해저파이프에 스포일러가 부착된 경우에 투영면적이 증가함으로 인하여 배후로 빠져나가는 유속이 커지고, 동시에 배후에서 발생하는 후류에 기인한 강한 와동이 발생한다. 그리고 2차적으로는 스포일러의 영향으로 상하 비대칭적인 유동 및 와동장이 발생하고, 이로 인해 비대칭적인 압력장이 형성된다. 이것은 파이프에 작용하는 힘의 비대칭성을 증가시켜 하향의 유체력을 크게 발달시킨다. 이와 같은 두 가지의 큰 원인으로 인하여 스포일러 부착형 해저파이프라인이 자가매설 되는 것으로 이해된다.